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An impressive fit to historical data suggests to biol-

ogists that a given ecological model is highly valid.

Models often achieve this fit at the expense of exagger-

ated complexity that is not justified by empirical evi-

dence. Because overfitted theories complement the

traditional assumption that ecology is ‘messy’, they

generally remain unquestioned. Using predation theory

as an example, we suggest that a fit-driven appraisal of

model value is commonly misdirected; although fit to

historical data can be important, the simplicity and gen-

erality of a theory – and thus its ecological value – are

of comparable importance. In particular, we argue that

theories whose complexity greatly exceeds the com-

plexity of the problem that they address should be

rejected. We suggest heuristics for distinguishing

between valuable ecological theories and their over-

fitted brethren.

Convinced that we exist in a geocentric universe, Ptolemy
sought to model quantitatively the motions of the planets.
Viewed from Earth, the motions of other planets appear
enigmatic – they display retrograde motion, slowly
carving out self-intersecting paths in the night sky.
Ptolemy ‘explained’ this motion by introducing epicycles.
Imaginary points, rather than the planets themselves,
orbited the Earth. These imaginary points were them-
selves the centers of other orbiting imaginary points.
Eventually, once the requisite number of nested suborbits
around imaginary points was introduced, the planets
themselves follow a final orbit. This fitting process was not
general; each planet had to be outfitted separately with its
own unique set of epicycles. Although the process was not
pretty, the product was: the beauty of Ptolemy’s epicycle
model was its impressive fit to observational data. More
than 1500 years later, Newton’s gravitational theory
paired with the Copernican heliocentric view of the
universe provided a far simpler and parsimonious theory
of planetary motion (Table 1). Although Newton’s theory
failed at the time of its introduction to provide a fit equal to
the accuracy of Ptolemy’s, it was recognized instantly to be
superior because of its rejection power. We view Ptolemy’s
epicycles as the best historical example of overfitting.
Thus, Ptolemy epitomizes the standard but persistent
error of theoreticians: their belief that explanatory power
can be achieved by building complex models with many
parameters (Box 1).

Nowhere is the erroneous Ptolemaic behavior of
theorists better recognized than in financial mathematics,
where models predicting market moves are abundant.
Next to actual price data sequences, successful financial
theorists always keep an equal number of ‘random walks’
simulating pseudo-prices that result from a sequence of
random changes. Anyone with a theory on how to play the
markets has to first check that it does not ‘work’ on the
random walk sequence. Any market theory that can fit a
random walk as well as it fits historical price data is
discarded. If a theory passes the random walk test, the
next test is for generality; overly specific theories (e.g. a
theory that works for British pounds but not Swiss francs)
are rejected because of their limited utility and reliability.
A theory that is unjustifiably complex or inexplicably
specific is too risky, and will not be entertained by
successful investors. The selective forces in this field
operating against overfitted price-fitting models are
simply too strong for any to persist.

Unfortunately, ecological theories are not subject to
comparably strong forces of selection. Although we might
wish it otherwise, the weakness of selection on ecological
theories is a reflection of the relative unimportance, in
social terms, of the field. An engineering firm that builds a
faulty bridge based on an overfitted model will be sued or
fined out of existence; to date, we know of no ecological
theorist whose similarly overfitted model has evoked
comparable penalties. Because society demands little
from theoretical ecology, one can have a successful lifetime
career in the field without any of one’s theories being put to
the practical test of actual prediction; the weak test of
retrofitting to past data is deemed as adequate validation
of an ecological theory.

From describing to explaining

Models describe, theories explain. ‘Describing’ and
‘explaining’ are not discrete conditions, but extremes on

Box 1. The big picture

† Many ecological models designed to illuminate the mechanisms

that drive predator–prey cycles are overparameterized.

† The strong fit of these models to ecological data inspires false

confidence; as a result, the work of empirical ecologists might be

led astray.

† With the intent of weeding out over-parameterized models, we

suggest rules of thumb for comparing the complexity of proposed

models with the complexity of the problem that they seek to

address.
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a continuum [1]. Theoreticans build relatively simple
models – imperfect descriptions – to understand ecologi-
cal phenomena, and to move close enough to ‘explaining’ to
yield valuable insights into the mechanisms that drive
natural systems. For the purpose of this paper, we use the
terms ‘model’ and ‘theory’ rather interchangeably because
we find meaning where description and explanation
overlap.

To describe, a model need be manipulated only to fit
historical data. We can argue about the relative fidelity of
such descriptions, but they are difficult to falsify. If we
really want to explain, our model ought to make predic-
tions that can lead to empirical testing, predictions that
have the potential to be falsified. For this reason, under-
standing and prediction cannot be decoupled. But: what
about chaotic dynamics? Don’t chaotic dynamics demon-
strate that, even with a perfect understanding, we remain
unable to make valid predictions? Although it is true that
chaotic dynamics do not allow reliable long-term predic-
tions, excellent short-term predictions can still be made.
We equate short-term predictions with understanding.
Many ecological theorists separate prediction from under-
standing. They contend that insights can be gleaned from
the model that best fits a given dataset, regardless of
whether the model makes valid predictions. This ad hoc
approach improves the quality of the description at the
expense of ultimate understanding.

When fitting is our sole criterion for model validation,
testing predictions is problematic. Making reliable pre-
dictions in the face of significant variability and noise can
be difficult, and we could find ourselves falsifying every
theory based on the rather poor fit of its predictions. For
this reason, we favor an approach that does not rely
exclusively on fitting as a way of judging between theories.

In particular, we value theoretical prohibitions, patterns
that a given model predicts cannot appear. We are not as
impressed when theoretical predictions agree with exist-
ing data as when theoretical prohibitions are absent from
existing data.

There are always many theories that will explain a
given observation. We prefer the simplest one, the most
general one, and the one that allows for the least
parameter fitting. A large number of unsupported or
weakly supported parameters suggests potential over-
fitting and decreases our trust in the model. Additionally,
we value single theories that provide general predictions
over a set of different models for specific situations. In
suggesting that we appraise models in the preceding
manner, we are making an aesthetic argument: we seek
the minimal description commensurate with the complex-
ity of the problem.

Model selection methods such as likelihood ratio tests,
Akaike’s information criterion (AIC), and the Schwartz
criterion (SC) provide a means of balancing the conflicting
goals of simplicity and goodness of fit [2,3]. AIC and SC
consider the likelihood of observed data given a particular
model (i.e. goodness of fit), but also include an objective
‘penalty’ that increases with the number of parameters
used (i.e. complexity). Models of varying complexity can
then be ranked: simple models that provide substantial fit
will be favoured over models that deliver only slightly
better fit at the expense of increased complexity. Perhaps
model selection criteria should be employed more widely,
but we can see three reasons why even their prevalent use
might not solve the problem of overfitting completely: (i)
most datasets and modeling scenarios do not fit the
assumptions of model selection criteria, which lose their
ability to balance simplicity and goodness of fit objectively

Table 1. Overfitting in astronomical and ecological models

Total number of

parametersa

Number of

unsupported

parametersb

Number of

parameters describing

the theory goal

‘Degree of

overfitting’c

Theories explaining the motions of other planets in our solar system

Newton (1687) 5d 0 5j 0

Ptolemy (ca. 150) ,10e ,10 5j,k þ 5

Theories explaining the trajectories of prey populations

Akcakaya [4] 5f 1 5l 0

Turchin and Batzli [5] 7g 4 3m þ 4

Hanski et al. [5] 9h 3 4n þ 5

King and Schaffer [7] 11i 3 5l þ 6

aScaling is often performed on equations to reduce the number of parameters used. Scaling of abundances can potentially reduce the final number of parameters by

eliminating one parameter per abundance variable. Therefore, to maintain a fair comparison of all models, we have listed the minimum number of post-scaling parameters for

each model, irrespective of whether the author(s) employed scaling. We did not consider scaling of time (another means of reducing the number of parameters), because this

procedure eliminates the potential to fit absolute periods.
bThe number of parameters employed for which no empirically determined range exists.
cThe difference between the number of parameters employed in the model and the number of parameters in the function that describes the goal of the theory.
dMass of the planet (first), two coordinates for the initial position of the planet (second and third) and two components of the orbital velocity of the planet (fourth and fifth).
ePtolemy employed 80 epicycles to fit the observed motions of the sun, moon, and five known planets. Each epicycle requires two parameters: a radius and a velocity. Our

estimate of five epicycles (ten parameters) per planet is conservative.
fS of Equation 3; R1, R2, Xp, K, Yd of Equation 5a/b; and Nmin of Equation 8 in [4] (two parameters removed by abundance scaling).
gTable 3 of [5] (three parameters removed by abundance scaling).
hr, K, G, H, C, D, S, Q of Equation 1; e in Equation 2; and s and sobs of [15] (two parameters removed by abundance scaling).
iTable 1 of [7] (three parameters removed by abundance scaling).
jParameters describing an elliptical orbit: two-dimensional coordinates of each focus (first to fourth), length of string attached to foci (fifth).
kBased on Kepler laws, of which Ptolemy was unaware.
lParameters describing actual predator–prey trajectories: prey period, relative amplitude, and cycle asymmetry (first to third); and predator amplitude and time lag (fourth and

fifth).
mParameters describing actual herbivore trajectory: herbivore period, relative amplitude, and cycle asymmetry (first to third).
nParameters describing actual prey trajectory: prey period, relative amplitude, and cycle asymmetry (first to third); and geographical gradient in dynamics (fourth).
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when assumptions are violated; (ii) many authors forward
a single model and do not provide data that would enable
even qualified readers to compare published models using
AIC or SC; and (iii) most critically, these methods will
always select one best model from the list of models
considered, but the completeness of this list is always at
question [3]. When authors do not provide a selection
criterion that balances the twin goals of fit and simplicity,
readers must turn to other means of assessing whether a
theory is overfitted.

One measure of complexity is the number of parameters
employed, which remains a crude but objective criterion.
Although particular theories with seemingly ‘simple’
mechanisms can contain a large number of ‘nuisance’
parameters, we consider such theories complex because
they suffer from the same overfitting problems as all
highly parameterized models. There are several consider-
ations to be made in judging whether a particular model is
appropriately complex: (i) the total number of parameters,
(ii) the number of parameters out of this total that are not
supported strongly by data, and (iii) the number of
parameters needed to represent the pattern of the
observed data (the ‘goal’). Larger overall numbers of
parameters, even if they are supported by data, decrease
our trust in the model. Box 2 provides an illustrative
example of how a simple, valid methodology can be
transformed into a complex, overparameterized model.

The use of model fitting to judge competing ecological
hypotheses is valid when relevant datasets are abundant
and high in quality. When data are limited, this form of
adjudication lacks power, and can be derailed by over-
fitting. Under such circumstances, we look to alternative
means of assessing hypotheses.

An overfitting parable: examples from predation theory

Unfortunately, most ecologists are either unaware of the
dangers of overfitting or are unable to spot Ptolemaic
explanations when they appear in the ecological literature.
Theoreticians (or modelers) are small minority of the
overall ecology community, comprising ,6% of the total
number of ecologists*. The specialized publications of this
small community have limited impact on the larger field of
ecology; to reach a broader audience, the theoretical
ecologist must publish in mainstream ecology journals.
When theoretical work is submitted to major journals that
do not specialize in theory, a problematic dynamic
emerges: because most ecologists are inexperienced
mathematically and theoretically, they are ill equipped
to judge the validity of theoretical publications. The small
contingent of theoreticians becomes a ‘priesthood’ that, as
the sole providers of theoretical guidance, can lead others
astray through the use of rhetorical devices.

Overfitting is a potent rhetorical device that has been
used extensively in a subfield with which we are intimately
familiar: population ecology explaining predator–prey
cycling. This subfield provides an illustrative example of
the greater phenomenon of overfitting in ecology. We
consider four models: Akcakaya [4], Hanski et al. [5],
Turchin and Batzli [6], and King and Schaffer [7].

The goal of the theorist is to identify the mechanism(s)
generating observed fluctuations of predator and/or prey
populations. The four models considered were not all
generated to address the same dataset, but they share a
common basic approach. Data employed in these inquiries
come in three forms: (i) time series data for predator and/or
prey populations, (ii) field estimated ranges of parameters
relevant to the proposed causative mechanisms, and (iii)
auxiliary evidence for or against the presence of specific
mechanisms in natural systems. Given time series data,
one or more mechanisms are proposed to explain the
observed pattern(s) and formulated as mathematical
models. The parameters of these models are constrained
to independently determined (i.e. field estimated) ranges
whenever such data exist. We refer to these constrained
parameters as ‘supported’; parameters for which no
observed ranges exist are ‘unsupported’. Parameters are
adjusted to produce the best fit to the observed data. When
multiple models are considered, some measure of goodness
of fit is applied to determine the relative success of each
model at producing the observed dynamics.

Some authors [5–8] claim to include only those
mechanisms supported by biological evidence (i.e. auxili-
ary ‘data’). As a result, more complex theories (containing
mechanisms for which data exist) are elevated, and less
complex theories (containing mechanisms for which data
are absent) are eliminated. This approach assumes that
biologists have collected relevant data within the span of
all possible mechanisms. We cannot imagine that such an
assumption is ever valid, and therefore discourage the use
of this approach.

Since the time of Lotka and Volterra, predation models
have increased in complexity, much of which emerged from

Box 2. Recent advances in overfitting

An example of an ecological model that is overfitted strongly is the

Non-linear Time Series Modeling (NLTSM) of Peter Turchin [10].

Turchin fits a surface to the growth rate, Rt ¼ Ntþ1=Nt; as a function of

two previous abundances, Nt and Nt21; based on time-series data.

The resulting function is then used to study the dynamic properties of

the system. Used prudently (that is with few parameters, typically

three), this is reliable methodology, and has been employed

successfully by Turchin, Royama, Berryman, Stenseth, and others

[11–14]. No mechanisms of delayed ðNt21Þ and direct ðNtÞ density

dependence are suggested by this approach, but it is a useful tool to

analyze the time series. NLTSM takes this valid approach a step

further. It allows for a total of ten parameters: the surface is assumed

to be quadratic (six parameters), abundances are rescaled by power

functions (two more parameters), and detrending is employed

whenever needed, which means always (two more parameters).

Most prey abundance data series to which this model has been

applied contain between 15 and 30 points. Fitting a ten-parameter

function to such a short data series reliably is impossible; even a

nonsensical series of comparable data points can be fit when there

are so many parameters allowed. The way to check such a model for

overfitting is to fit random walks on top of what is explained by

simple three-parameter models to see if the move from three to ten

parameters is justified. We suspect that the results of this experiment

would reveal the overfitted nature of the NLTSM. This point is lost on

unsuspecting readers, who must rely on the information provided,

where the reported R 2 values (measuring the fit of the ten-parameter

surface to the data points) look impressive. * Holland, M.M. et al. (1992) Profiles of ecologists: results of a survey of the
membership of the Ecological Society of America. Ecol. Soc. Am. 47
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attempts to fit models to major aspects of the historical
data. The fact that complex models employ supported
parameters is often used to deflect accusations of over-
fitting; models constrained in their fitting of crucial
parameters are viewed as ‘less overfitted’ than their
unconstrained counterparts. This defense has to be
considered skeptically. If there were just a few parameters,
the claim would be credible. When there are many
parameters, and ranges are very large and uncertain for
a good percentage of them, the potential for overfitting
exists even when supported parameters are utilized. The
volume of the parameter space that is consistent with the
observations declines rapidly with the number of par-
ameters (Figure 1).

The number of parameters employed serves as an
indirect measure of how much squeezing one has to do to fit
the theoretical construct to the evidence; in other words,
how much trial and error went into producing the model.
Good theories work well from the first trial; they are
simple, general and have few parameters. Subjectively, we
forget all our trial and error and present a published model
as if it was the first one that came logically to our mind.
Because the answer we seek is known to us in advance (in
the form of historical data), it is very hard not to
subconsciously fit models to the facts ad hoc. Certainly,
the relatively complex model structure that gives the best
fit to historical data is usually developed with a good
amount of trial and error. Thus, all claims of ‘not fitting to
the data’ have to be considered cautiously. We always fit,
directly or indirectly. It is for this reason that we have to
develop more objective ways to judge the plausibility of a
theory.

Kepler described the elliptical nature of planetary
orbits. An ellipse can be fully described with five
parameters (Table 1). Although Kepler was unaware of
the gravitational theory that would eventually explain
these orbits, his work suggested that a reasonable
explanatory theory should have about five parameters.
Although we do not know what drives population cycles,
our awareness of their mathematical properties defines
our ‘goal’: the exact number of parameters that should
describe a given time series. The simplest non-mechanistic

description of a cycle is a sine wave, which requires two
parameters: period and amplitude. If we wish to pay
attention to cycle asymmetry (e.g. slower up than down),
we can describe this behavior with another parameter. If
our theory takes latitudinal gradients into account, we can
allow ourselves an additional parameter. If we have data
for two interacting species (assuming that the period is the
same), we need another amplitude for the second species
and the ‘phase shift’ or time lag between the two waves. In
so doing, we have counted a maximum of six potential
‘goal’ parameters. Table 1 enumerates the ‘goal’ par-
ameters of each of the four models considered. Although
none of the historical time series are characterized by all
six potential parameters described above, all of them pull
from this same menu of parameters.

Table 1 also compares the number of parameters
employed by each model with the number of parameters
that describe its ‘goal’. Of the predator-prey models
considered, the one by Akcakaya [4] is not only first
historically, but also the most solid. The only weakly
supported parameter employed is the size of refugia for
hares. It is, however, a crucial parameter because the very
presence of cycles is controlled by the size of refugia. In
contrast with the other three models considered, the
Akcakaya model [4] appears to be extremely reasonable.
The other three models [5–7] are overparameterized by
from four to six parameters. Additionally, all of them
utilize at least three unsupported parameters. With so
many unsupported parameters, these models ought to be
able to fit every cycle.

When we view predator-prey theories such as most of
those described above, our aesthetic sense tells us that
there has to be something wrong with them. Passing our
‘aesthetic criteria test’ is not a guarantee of being correct; a
diversity of theories might work aesthetically. However,
aesthetic tests can serve as an ideological sieve, filtering
out unviable theories so that differences between the
remaining viable models can be settled by clear manip-
ulative experiments.

Note that we include the generality of an explanation in
the list of aesthetic criteria, but this is far from a universal
view. Many people are much more comfortable thinking

Figure 1. The significance of ranges in multiple-parameter space. Empirically based parameter ranges have been heralded as a means of creating ‘realistic’ models [7,15].

In reality, models that constrain parameter values within biologically observed ranges are fitted only slightly less than those that allow arbitrary parameter ranges.

(a) A hypothetical range of observed values for a single parameter, 20% of which fits the target data of a one-parameter model. (b) A similar two-parameter model with

empirically based ranges. The resulting parameter area that fits the target data represents only 4% of the total area of biologically realistic parameter combinations.

(c) An analogous three-parameter model fits the target data only within 0.8% of the total parameter volume. As more parameters beyond three are added, the probability

that a given set of parameters (randomly selected from known ranges) will fit the model approaches zero.
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that every case has a different explanation. For these
authors, even the cycle of the voles is fundamentally
different from that of lemmings [6]. This view reminds us
again of Ptolemaic epicycles, fitted separately and differ-
ently for the trajectory of every planet. It took over 1500
years to reject this erroneous view in astronomy. We hope
that we can progress more rapidly in ecology.

Sensitivity analysis offers another means of eliminating

overfitted theories

For those uncomfortable with the potential subjectivity of
our aesthetic approach, another means of testing the
viability of a complex model is to do an extensive
sensitivity study. This would entail checking, at a
minimum, the highs and lows of every parameter range.
With one parameter, only two cases need to be checked, but
with ten parameters, just the ‘high’ and ‘low’ check entails
210 or over 1000 combinations. Although authors of
complex models might claim that complete sensitivity
analyses are too time-consuming to perform, we suspect
that such analyses would discover the overfitted and thus
unreliable character of the model. King and Schaffer do a
good job of pairwise sensitivity analysis for some of the
pairs of influential parameters [7]. This analysis suggests
that most of the volume in the parameter space does not
produce the desired result (Figure 1 describes this problem
in visual terms). In other words, picking values randomly
within observed ranges in most cases will not produce the
desired ecological phenomenon. As a result, the theory

does little to explain the actual dynamics of natural
populations, and we are left with a model that is just
‘consistent with’ past data.

Rules of thumb for judging ecological theories:

recognizing rhetoric

Most ecologists do not read theoretical papers. Consider-
ing the amount of overparameterized theory in the
literature, and the rhetoric that often surrounds this
theory (Box 3), this might represent a fairly prudent
general strategy for the nontheoretician. The problem is
that specific theories do make sense sometimes, and this
quality theoretical work can guide empirical research. For
those nontheoretical ecologists who do wish to safely tap
into the theoretical literature, we offer four rules of thumb
for judging ecological theories in Box 4. In positing these,
we are suggesting that ecologists adopt a more skeptical
view of theoretical work. However, it is not our view that
theoreticians intentionally mislead their fellow ecologists
through the use of rhetoric. We suspect that theoretical
ecologists simply suffer from excessive parental love.
Because they fall in love with their own theories and
treat them as their ‘children’, many theoreticians are blind
to the overfitted nature of their models.

To be fair, we admit that we too might be guilty of
rhetoric. In fact, one of the authors (L.R.G.) supports a
competing view on population cycles, one based on the
theory of maternal effects [9]. It captures the period and
the asymmetry of prey cycles and employs two scaled
parameters, one of which is unsupported. It can be
falsified, because it predicts that population cycles with
a period between two and six generations should never be
found. These periods do appear to be missing from existing
datasets. Because of this conflict of interest, we cannot
claim impartiality with respect to the predation-based
population cycle theories that we criticize here.

Box 3. Recent advances in rhetoric

The apparent ‘objective’ nature of theoretical work obscures the

great potential for using rhetoric to support one’s models. As

biologists, we have come to expect data that are somewhat messy,

and we question instinctively every result that seems ‘too perfect’.

Theorists are acutely aware of this concern, and sometimes use

rhetorical devices to hide the overfitted nature of their models (see

Rule of Thumb #4 in Box 4 for more on this rhetorical device). Hanski

and Turchin [15] add environmental noise and experimental error,

producing a messier result that is more palatable to most biologists.

Turchin and Batzli’s [6] model produces a cycle period of 5.5 years,

the ‘best fit’ to the true period of four years among the models

reviewed in their paper. Curiously, the authors then admit that some

values of an unsupported parameter (a) can produce the actual

period of four years. As such, the reported value (5.5 years) seems

strategically selected to avoid being unbelievably close to the target.

Turchin [10] reports a cycle period for the same model in a later

publication that is even further from the target (7.0 years). We doubt

that any value for the period is outside the uncertainty range of this

model.

How the parameters are presented can also impede our ability to

detect overfitting. Whereas some authors provide clear lists of

parameters employed [6,7], others do not. Turchin introduces the

many parameters of his Non-linear Time Series Modeling (NLTSM)

model (Box 2) sporadically among large tracts of discussion [10]; the

parameters are never compiled into a single list, possibly leading

some readers to believe that he is using a fairly simple model. Hanksi

et al. present their model equations in a stripped-down format [5]. To

count the actual number of parameters used, one has to track down

the original model in other publications [15,16]. The claim that

parameters are ‘empirically based’ (i.e. supported) can also be

abused (Figure 1, main text). Turchin and Batzli [6] list ‘median

values’ of parameters for which there are no known ranges. The

correct term is ‘point estimates’; the word “median” implies

knowledge of the range.

Box 4. Rules of thumb for judging ecological theories

(1) Compare the number of parameters with the number of data

points. When a model uses ten parameters to fit to a time series

of 25 data points, chances are that it can fit almost any 25 data

points.

(2) Compare the complexity of the proposed model with the

complexity of the phenomenon that it seeks to explain. Often,

proposed models turn out to be dramatically more complex

than the ecological problems that they seek to solve. If one can

state the ecological phenomenon in fewer words than it takes to

formulate the model, the theory is probably not useful.

(3) Beware of meaningless caveats confessing oversimplification.

Eager for their work to be embraced by ecologists, theoreti-

cians like to conclude that their models are oversimplified. An

already complex model that ‘admits’ that there are more

mechanisms to be taken into account (read: more parameters)

betrays a tendency towards further unjustified complexity.

(4) Beware of being given what you expect. As ecologists, we have

come to expect that our data will be ‘messy’, and many

theoreticians will go out of their way to meet this expectation.

One way to make the curves look ‘less perfect’ is to simply add

environmental noise and observational error (each variance

adding one more parameter). Suspect that rhetoric is at work

when models that are fully capable of producing a perfect fit are

tweaked to show a more palatable near-perfect fit.
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Increasing selection against overfitted theories

Natural selection of ideas makes science different from
astrology. The strength of selection depends on how
important a particular field is. In unimportant fields,
theories evolve neutrally, and thus flourish unchecked. As
long as overfitted models flourish, most ecologists will
remain justifiably skeptical of the theoretical minority.
Two factors will increase the quality of ecological theories:
(i) increased social demand for practical applications, and
(ii) the related improvement in mathematical education of
all ecologists. Waiting for these changes to occur is
potentially dangerous. As we come to rely more heavily
on predictive theories to instruct our conservation efforts,
natural populations might suffer from the use of overfitted
models. It is our hope that we will not have to ‘learn the
hard way’. If adopted, our suggested rules of thumb can
begin the selective process now.
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