Gause, Luckinbill, Veilleux and What to Do:

Distinguishing between the Prey-Dependent and Ratio-Dependent Limit Myths

> Christopher X J. Jensen & Lev R. Ginzburg Stony Brook University, Stony Brook, NY, USA

Parameters:

maximum prey growth rate r maximum predator attack rate Ω maximum predator death rate μ predator conversion efficiency e h handling time Kcarrying capacity of prey

General Predator-Prey Equations:

Which functional response should be employed?

f'(•)?

$f(\mathbf{N}) \longleftrightarrow f(\mathbf{N},\mathbf{P}) \longleftrightarrow f(\mathbf{N}/\mathbf{P})$

"Limit Myths"

(Arditi and Ginzburg 1989)

Possible Outcomes of a Predator-Prey System:

- 1) Complete consumption of prey followed by starvation of the predator ("Dual Extinction").
- 2) Oscillatory or non-oscillatory coexistence of predator and prey ("Coexistence")
- 3) Starvation of the predator followed by 'escape' of the prey ("**Predator Extinction**").

"Gause Loops"

(Gause 1934)

Luckinbill 1973:

Veilleux 1979:

The attack rate of predators is a function of the nutritional status of the prey.

Veilleux 1979:

The **efficiency** of predators is a function of the nutritional status of the prey.

Shifts in parameter space produce changes in qualitative outcomes:

д С	g Ø	Food Concentration:	Outcome:
asinç	asin	1.35 – 1.80	52% Dual Extinction , 48% Predator Extinction
crea	ecre	0.59 – 1.13	Coexistence
de	ğ	0.18 – 0.45	Predator Extinction

Is dual extinction the result of stochastic or deterministic processes?

Prey-Dependent Predator Extinction:

Prey-Dependent Dual Extinction:

Rich Dynamics of Ratio-Dependence:

(Berezovskaya et al. 2001)

Veilleux Experiment in Berezovskaya Space:

Comparison of Predicted Outcomes:

Change in Parameter	Prey-Dependent Outcome	Ratio-Dependent Outcome
$\alpha\downarrow$	$\mathbf{DE} \rightarrow \mathbf{CoEx}$	$\mathbf{DE} \to \mathbf{CoEx}$
$r\downarrow$	no change	$CoEx \rightarrow DE$
μ↓	$CoEx \rightarrow DE$	$\mathbf{CoEx} \to \mathbf{DE}$
<i>e</i> ↓	$DE \rightarrow CoEx$	$\mathbf{DE} \to \mathbf{CoEx}$
$h\downarrow$	$CoEx \rightarrow DE$	$\mathbf{CoEx} \rightarrow \mathbf{DE}$

Comparison of Predicted Outcomes:

Change in Parameter	Prey-Dependent Outcome	Ratio-Dependent Outcome
$\alpha\downarrow$	$\mathbf{DE} \rightarrow \mathbf{CoEx}$	$\mathbf{DE} \to \mathbf{CoEx}$
$r\downarrow$	no change	$CoEx \rightarrow DE$
$\mu\downarrow$	$CoEx \rightarrow DE$	$\mathbf{CoEx} \rightarrow \mathbf{DE}$
<i>e</i> ↓	$DE \rightarrow CoEx$	$\mathbf{DE} \to \mathbf{CoEx}$
$h\downarrow$	$CoEx \rightarrow DE$	$CoEx \rightarrow DE$

K is not independent of r:

The Paradox of Enrichment:

Comparison of Predicted Outcomes:

Change in Parameter	Prey-Dependent Outcome	Ratio-Dependent Outcome
$\alpha\downarrow$	$\mathbf{DE} \rightarrow \mathbf{CoEx}$	$\mathbf{DE} \to \mathbf{CoEx}$
$r\downarrow$	$DE \rightarrow CoEx$	$CoEx \rightarrow DE$
$\mu\downarrow$	$CoEx \rightarrow DE$	$\mathbf{CoEx} \rightarrow \mathbf{DE}$
<i>e</i> ↓	$\mathbf{DE} \rightarrow \mathbf{CoEx}$	$DE \rightarrow CoEx$
$h\downarrow$	$CoEx \rightarrow DE$	$CoEx \rightarrow DE$

Comparison of Predicted Outcomes:

Change in Parameter	Prey-Dependent Outcome	Ratio-Dependent Outcome
$\alpha\downarrow$	$\mathbf{DE} \rightarrow \mathbf{CoEx}$	$\mathbf{DE} \to \mathbf{CoEx}$
<i>r</i> ↓	$DE \rightarrow CoEx$	$\mathbf{CoEx} \to \mathbf{DE}$
μ↓	$CoEx \rightarrow DE$	$\mathbf{CoEx} \rightarrow \mathbf{DE}$
<i>e</i> ↓	$DE \rightarrow CoEx$	$\mathbf{DE} \to \mathbf{CoEx}$
$h\downarrow$	$CoEx \rightarrow DE$	$CoEx \rightarrow DE$

Searching for the better "Limit Myth" using the *Didinium-Paramecium* system:

- 1) Confirm *r*-dependence of *K* in *Paramecium-Didinium* system.
- 2) Revisit the experiments of Gause, Luckinbill, and Veilleux to explore the changes in qualitative outcomes generated by manipulations of *r*.

Confirming the *r*-dependence of *K*:

- 1) The growth rate (*r*) of the prey in isolation can be reduced by imposing proportional mortality at frequent, regular intervals.
- 2) Decrease *r* and observe the average equilibrium abundance (*K*):
 - *H*₀ = decreasing *r* should have **no effect** on the average equilibrium abundance (*K*).
 - *H_a* = decreasing *r* should **reduce** the average equilibrium abundance (*K*).

Gause, Luckinbill, and Veilleux redirected:

- 1) Using the methods of Luckinbill and Veilleux, produce **coexistence** in the *Paramecium*-*Didinium* system.
- 2) Decrease *r* via experimental manipulation:
 - *H*₀ = decreasing *r* in stable system should maintain stability (Prey-dependent prediction).
 - *H_a* = decreasing *r* in stable system should destabilize the system (Ratio-dependent prediction).

Acknowledgements:

- Thanks to Rafael Bravo de la Parra and the AICME organizing committee for the opportunity to present.
- Chris Jensen is supported by a *National Science Foundation* Graduate Research Fellowship.

Stony Brook University Department of Ecology and Evolution *email:* cjjensen@life.bio.sunysb.edu

Rich Dynamics of Ratio-Dependence:

Outcome can depend on parameter values and/or initial values (*N* & *P*):

- 1) Dual Extinction for any initial values
- 2) Coexistence for any initial values
- 3) Predator Extinction for any initial values
- 4) Both Dual Extinction and Coexistence are possible, outcome depends on initial values
- 5) Both Predator Extinction and Dual Extinction are possible, outcome depends on initial values

(Berezovskaya et al. 2001)

Coexistence and Dual Extinction under Ratio-Dependence*:

$\alpha < r + \mu \longrightarrow$ coexistence

(Ginzburg et al. 1974)

* Works for certain area of initial abundances, with adequate predator growing ability.

Notation Confusion:

Prey growth function:

 $rN(1 - N/K) = rN - \gamma N^2$

 $\gamma = \frac{r}{K} \qquad \qquad K = \frac{r}{\gamma}$