Are the prey- and ratio-dependent functional responses really extremes along a continuum of predator interference?

\[f(N) \rightarrow f(N/P) \]

Christopher X Jon Jensen
Stony Brook University
What is Predator Interference?

• Reduction in the per capita consumption rate as predator abundance increases

• Potential mechanisms:
 – Time lost bumping into and “handling” other predators
 – Resource “sharing” over longer intervals of feeding reduces overall consumption rate
Holling Type II: Per Capita Consumption Rate of Predators vs. Prey Abundance
Holling Type II:

Per Capita Consumption Rate of Predators

Predator Abundance
Predator Interference is Real

(Salt 1974)
Competing Functional Responses

Where N is prey density and P is predator density

$f(N)$

Holling Type II
“prey dependent”

increasing predator interference

$f(N/P)$

Arditi-Ginzburg
“ratio dependent”

Where N is prey density and P is predator density
Where \(N \) is prey density and \(P \) is predator density

\[
f(N)
\]
Holling Type II
“prey dependent”

\[
f(N/P^m)
\]
Hassell-Varley-Holling
“predator dependent”

\[
f(N/P)
\]
Arditi-Ginzburg
“ratio dependent”

Where \(N \) is prey density and \(P \) is predator density
Competing Functional Responses

Where N is prey density and P is predator density

$f(N)$
Holling Type II
“prey dependent”

$f(N, iP)$
Beddington-DeAngelis
“predator dependent”

$f(N/P^{m})$
Hassell-Varley-Holling
“predator dependent”

$f(N/P)$
Arditi-Ginzburg
“ratio dependent”

Where N is prey density and P is predator density
Does it matter which form of predator interference is used?
Does it matter which form of predator interference is used?

\[f \left(\frac{N}{P^m} \right) \]

Hassell-Varley-Holling Functional Response for constant prey, increasing predator at various interference.
Does it matter which form of predator interference is used?

\[f \left(\frac{N}{P^m} \right) \quad f \left(N, iP \right) \]

Beddington-DeAngelis Functional Response for constant prey, increasing predator

Hassell-Varley-Holling Functional Response for constant prey, increasing predator
Stability Properties of the Extreme Models:

<table>
<thead>
<tr>
<th>Change in Parameter</th>
<th>Prey-Dependent Outcome</th>
<th>Ratio-Dependent Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \uparrow$ (searching efficiency)</td>
<td>Prey Extinction</td>
<td>Prey Extinction</td>
</tr>
<tr>
<td>$K \uparrow$ (carrying capacity)</td>
<td>Prey Extinction</td>
<td>no change</td>
</tr>
<tr>
<td>$r \uparrow$ (prey growth rate)</td>
<td>no change</td>
<td>Prey Persistence</td>
</tr>
<tr>
<td>$d \uparrow$ (pred. death rate)</td>
<td>Prey Persistence</td>
<td>Prey Persistence</td>
</tr>
<tr>
<td>$e \uparrow$ (conversion eff.)</td>
<td>Prey Extinction</td>
<td>Prey Extinction</td>
</tr>
<tr>
<td>$h \uparrow$ (handling time)</td>
<td>Prey Persistence</td>
<td>Prey Persistence</td>
</tr>
</tbody>
</table>
The Simulations:

1. Numerical approximations of differential equations using Populus Software
2. Designed to mimic behaviors of *Didinium-Paramecium* system (parameter values from Harrison 1995)
3. Qualitative outcomes explored over a range of *r/K* values (as planned for my experiments)
4. Parameters r and K linked
5. Non-deterministic criterion for extinction employed
Hassell-Varley-Holling: \(f \left(\frac{N}{P^m} \right) \)
Beddington-DeAngelis: $f(N, iP)$
Beddington-DeAngelis: \(f(N, iP) \)
Competing Functional Responses

Where N is prey density and P is predator density

- $f(N)$
 - Holling Type II
 - "prey dependent"

- $f(N,iP)$
 - Beddington-DeAngelis
 - "predator dependent"

- $f(N/P^m)$
 - Hassell-Varley-Holling
 - "predator dependent"

- $f(N/P)$
 - Arditi-Ginzburg
 - "ratio dependent"

Where N is prey density and P is predator density
Competing Functional Responses

Where N is prey density and P is predator density

- $f(N)$
 - Holling Type II
 - "prey dependent"

- $f(N,P)$
 - Hassell-Varley-Holling
 - "predator dependent"

- $f(N,P^m)$
 - Arditi-Ginzburg
 - "ratio dependent"

- $f(N/P)$
 - Beddington-DeAngelis
 - "predator dependent"
Competing Functional Responses

\[f(N,iP) \]

Beddington-DeAngelis
“predator dependent”

\[f(N) \]

Holling Type II
“prey dependent”

\[f(N/P) \]

Arditi-Ginzburg
“ratio dependent”

\[f(N/P^m) \]

Hassell-Varley-Holling
“predator dependent”

Where \(N \) is prey density and \(P \) is predator density
The *Paramecium-Didinium* system:

- *Paramecium caudatum*
- *Didinium nasutum*

Meets major assumptions of simple predator-prey models:
- Closed system
- Can be maintained without heterogeneities/refugia
- Single prey/single obligate predator
- Prey food can be delivered as semi-continuous input
Answers via Experiment:

• What is the magnitude of predator interference?
 – Direct measurement of consumption rate over a range of predator densities
 – Curve fitting to HVH and BD models

• Which model should be used?
 – Microcosm experiments designed to explore the r/K continuum
 – Detection of characteristic extinction events: low r, high K
Acknowledgements:

- Significant contributions to this work have been made by my committee members: Lev Ginzburg, Rob Armstrong, and Dan Dykhuizen.
- I am fortunate to be supported by a National Science Foundation Graduate Research Fellowship and the L. B. Slobodkin Endowment Fund for Graduate Research.
Non-deterministic Predator Extinction
Non-deterministic Dual Extinction
Non-deterministic Extinction Criterion:

- P and N values represent densities of prey per volume.
- In a finite system, a fraction of an individual cannot exist. Threshold extinction density is 1 individual per system.
- Threshold extinction as individuals per volume:

\[
\frac{\text{Individuals}}{\text{Volume}} = \frac{\text{Individuals}}{\text{System}} \cdot \frac{\text{System}}{\text{Volume}}
\]