Are the prey- and ratio-dependent functional responses really extremes along a continuum of predator interference?

Christopher X Jon Jensen Stony Brook University

What is Predator Interference?

- Reduction in the per capita consumption rate as predator abundance increases
- Potential mechanisms:
 - Time lost bumping into and "handling" other predators
 - Resource "sharing" over longer intervals of feeding reduces overall consumption rate

Holling Type II:

Prey Abundance

Holling Type II:

Predator Abundance

Predator Interference is Real

(Salt 1974)

Holling Type II "prey dependent" increasing predator interference

f (N/P)

Arditi-Ginzburg "ratio dependent"

Where \mathbf{N} is prey density and \boldsymbol{P} is predator density

f (N)

Holling Type II "prey dependent"

f (N/P) Arditi-Ginzburg

"ratio dependent"

Hassell-Varley-Holling "predator dependent"

Where N is prey density and P is predator density

→ f (N,iP)

Beddington-DeAngelis "predator dependent"

f (N)

Holling Type II "prey dependent"

Hassell-Varley-Holling "predator dependent"

Where N is prey density and P is predator density

f (N/P)

Does it matter which form of predator interference is used?

Does it matter which form of predator interference is used?

$f(N/P^m)$

Holling Functional Response for constant prey, increasing predator at various interfe

$f(N/P^m)$

Holling Functional Response for constant presenting to the formation of th

f (N, iP)

Stability Properties of the Extreme Models:

Change in Parameter	Prey-Dependent Outcome	Ratio-Dependent Outcome
<i>a</i> ↑ (searching efficiency)	Prey Extinction	Prey Extinction
$oldsymbol{K}\uparrow$ (carrying capacity)	Prey Extinction	no change
	no change*	Prey Persistence
$d\uparrow$ (pred. death rate)	Prey Persistence	Prey Persistence
e ↑ (conversion eff.)	Prey Extinction	Prey Extinction
$oldsymbol{h} \uparrow$ (handling time)	Prey Persistence	Prey Persistence

The Simulations:

- 1. Numerical approximations of differential equations using Populus Software
- 2. Designed to mimic behaviors of *Didinium-Paramecium* system (parameter values from Harrison 1995)
- 3. Qualitative outcomes explored over a range of *r/K* values (as planned for my experiments)
- 4. Parameters r and K linked
- 5. Non-deterministic criterion for extinction employed

Hassell-Varley-Holling: f (N/P^m)

Beddington-DeAngelis: f(N, iP)

Beddington-DeAngelis: f(N, iP)

→ f (N,iP)

Beddington-DeAngelis "predator dependent"

f (N)

Holling Type II "prey dependent"

Hassell-Varley-Holling "predator dependent"

Where N is prey density and P is predator density

f (N/P)

→ f (N,iP)

Beddington-DeAngelis "predator dependent"

f (N)

Holling Type II "prey dependent"

Hassell-Varley-Holling "predator dependent"

Where N is prey density and P is predator density

f (N/P)

→ f (N,iP)

Beddington-DeAngelis "predator dependent"

f (N)

Holling Type II "prey dependent"

Hassell-Varley-Holling "predator dependent"

Where N is prey density and P is predator density

f (N/P)

The Paramecium-Didinium system:

Paramecium caudatum

Didinium nasutum

Meets major assumptions of simple predator-prey models:

- Closed system
- Can be maintained without heterogeneities/refugia
- Single prey/single obligate predator
- Prey food can be delivered as semi-continuous input

Answers via Experiment:

- What is the magnitude of predator interference?
 - Direct measurement of consumption rate over a range of predator densities
 - Curve fitting to HVH and BD models
- Which model should be used?
 - Microcosm experiments designed to explore the r/K continuum
 - Detection of characteristic extinction events: low r, high K

Acknowledgements:

- Significant contributions to this work have been made by my committee members: Lev Ginzburg, Rob Armstrong, and Dan Dykhuizen
- I am fortunate to be supported by a National Science Foundation Graduate Research Fellowship and the L. B. Slobodkin Endowment Fund for Graduate Research

Non-deterministic Predator Extinction

Non-deterministic Dual Extinction

Non-deterministic Extinction Criterion:

- P and N values represent densities of prey per volume
- In a finite system, a fraction of an individual cannot exist. Threshold extinction density is 1 individual per system
- Threshold extinction as individuals per volume:

Individuals

Individuals

System

Volume

System

Volume