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What motivates some members of a social group to voluntarily incur costs in order to provide for the common good? This ques-
tion lies at the heart of theoretical and empirical studies of cooperative behavior. This is also the question that underlies the classic 
volunteer’s dilemma model, which has been previously explored in scenarios where group members are related or interact asym-
metrically. Here we present a model that combines asymmetry and relatedness, showing that the probability of volunteerism in 
such systems depends closely on both the degree of asymmetry and level of relatedness between interacting individuals. As has 
been shown in previous volunteer’s dilemma models, the payoff ratio and overall group size also influence the probability of vol-
unteerism. The probability of volunteerism decreases with increasing group size or decreasing cost-to-benefit ratio of the co- 
players; in the presence of asymmetrical interactions, subordinate players were more likely to offer public goods than the domi-
nant player. More asymmetrical interactions decrease the probability of volunteerism of the dominant player; overall volunteerism 
increases with increasing relatedness.  
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For decades, how and why public goods are provided has 
been a focal question for researchers exploring the evolution 
of cooperation in animal and microbial social systems (in-
cluding in human societies) [1–5]. The iterated prisoner’s 
dilemma (IPD) and volunteer’s dilemma (VoD) are two of 
the most influential models used to explain why social 
partners incur costs to provide common goods shared by all 
members of the society [6–8]. In the IPD model, individuals 
are predicted to pay the cost to provide for the common 
good in an infinitely iterated game, because any defection 
will discourage further cooperation by other individuals in 
the future. In the IPD, the predicted optimal behavior for 
every individual is to provide common public goods, but 
these predictions fail to explain why common goods are 

usually provided by some but not all individual in a social 
group [9–11]. 

The volunteer’s dilemma (VoD) model, as first proposed 
in the social sciences [12], is an N-person game in which a 
public good U is produced if and only if at least one player 
volunteers to pay a cost K (where U>K>0); when no indi-
vidual produces the common good, the players involved 
receive a lower payoff (0) than the payoff (U–K) they would 
have received if they had volunteered to provide the public 
good. Obviously, there are N asymmetric equilibria in pure 
strategies, which are usually not attainable without coordi-
nation amongst social partners. In a symmetric mixed Nash- 

equilibrium, the probability of defection is *= 1N K U  

[12]. This model assumes that some individuals within the 
system provide the common goods but every individual will 

have the same probability p*=1 1N K U to be a volunteer 
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[12]. However, the production of common goods by the 
contribution of a single volunteer is inefficient without a 
mechanism for coordinating who volunteers, which leads to 
a paradox referred to as the “volunteer’s dilemma” [7,12]. 
The probability of free-riding will increase with the 
group-size N [12,13], and the spread of free-riding has the 
potential to disrupt the cooperative interaction between the 
social partners.  

The conventional forms of both the IPD and the VoD 
make the basic assumption that the partners involved in the 
system interact symmetrically. Under these conditions, all 
individuals are predicted to have the same probability of 
paying the cost to provide common goods and maintain the 
cooperative interaction [14]. However, almost all of the 
well-studied systems in which cooperative behavior is ob-
served have shown that individuals interact asymmetrically. 
For example, in the well-known eusocial system of ants and 
bees, workers provide public services such as nursing and 
food collection, but queens do not. In the case of inter-spe-     
cific cooperation, such as the mutualistic relationship be-
tween yuccas and the yucca moth and between figs and the 
fig wasp, the host plant pays the extra cost to maintain the 
stability of the mutualism through the sanction of non-coop-     
erative pollinators or repression of over-population of polli-
nators, which prevents the over-exploitation of the common 
resource shared by pollinators [15–17].  

In addition, individuals are often genetically or recipro-
cally related, which has the potential to affect cooperation 
[5,7,10,18]. In many well-documented systems involving 
cooperation, the higher the genetic similarity or level of 
reciprocal exchange (i.e. relatedness), the higher the proba-
bility will be for individuals taking a cooperation strategy. 
For example, in social insects, such bees, ants or wasps, the 
higher genetically related between the queen and workers, 
the higher probability of cooperation behaviors could be 
observed [10]. 

Other researchers have explored the effects of separately 
adding either asymmetric interaction or relatedness to the 
VoD: Diekmann [19] has analyzed asymmetric interaction, 
and Archetti [7,18] has analyzed relatedness. While these 
individual treatments of asymmetry and relatedness provid-
ed valuable insights, they do not allow us to make predic-
tions about the many systems in which both of these factors 
simultaneously play a role [20,21]. In this paper we modify 
the classic VoD model to consider the effects of both 
asymmetry and relatedness, expanding upon and unifying 
the work of Diekmann [19] and Archetti [18]. 

1  Game theoretical analysis 

1.1  Review of Diekmann’s asymmetric volunteer’s game 

A provision point version of the classic public goods game, 
the volunteer’s dilemma (VoD) specifies a threshold level 
of volunteer contribution above which all N players enjoy 

the benefit of public goods. Each individual in the game 
maintains two options: (1) to pay the cost of volunteering 
and thus ensure the provision of public goods to all; or (2) 
to pay no cost and hope to reap the benefits that come from 
the volunteerism of others [12,14,22]. Such games assume 
that all individuals pay the same cost for volunteering and 
reap identical benefits once the public good has been pro-
vided. From a biological standpoint this is unrealistic, be-
cause most natural interactions are asymmetric, suggesting 
that not all players earn the same payoff. This asymmetrical 
interaction can be represented mathematically as different 
potential net payoffs for different players [16,23–26]. An 
asymmetric volunteer’s dilemma game developed by Diek-
mann [19] introduces an unequal distribution of costs Ki and 
interests Ui among i=1,2,···,N players, and analyzes the bi-
nary-decision N-person matrix game with each player i’s 
(i=1,2,···,N) decision an alternative between Ci (volunteer-
ing, thus cooperation) and Di 

( free-riding, thus defection). 
Assuming that for all i’s Ui>Ki>0, the payoff structure is as 
follows: 

(i) Employing strategy Ci 
always yields the net payoff of  

Ui Ki; whereas 
(ii) Employing strategy Di yields the maximum payoff of 

Ui whenever at least one other player employs strategy Ci 
(“volunteering” for other players); otherwise 

(iii) If all players employ strategy Di, then all players 
forfeit the public good and earn nothing (payoff = 0). 

Based on this structure, the asymmetric VoD has N effi-
cient and strict equilibria with exactly one “volunteer” and 
N1 “free-riders”. However, the existence of the pure strat-
egy means there will be only one “volunteer” while the oth-
er N1 partners adopt the “free-rider” strategy, an outcome 
that seems unlikely given that the volunteer must pay the 
extra cost to provide the public goods but ends up earning 
the lowest payoff. This feature of the pure-strategy equilib-
rium leads us to focus on an additional equilibrium point in 
which mixed (probabilistic) strategies may exist [19]. 

If we let strategy Di be played with probability i, then 
actor i’s expected utility (i.e. fitness or interest in the bio-
logical cooperation systems) Ei is 

 1 (1 )( ).i i i j i i i
j i

E U U K  


 
     

 
  (1) 

By partially differentiating with respect to i and setting the 
equation equal to zero [27,28], we get  
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Substitution of i in eq. (1) by i
* yields the payoff-vector 

of the mixed equilibrium strategy, and it becomes apparent 
that the expected value in the equilibrium Ei

* does not de-
pend on i, hence this is a weak mixed Nash-equilibrium if  
0<i

*<1
 
for i=1,2,···,N [19]. If Ui=U

 
and Ki=K, the mixed 

equilibrium of the symmetric game is * 1N
i K U   [11]. 

From eq. (3), the Nash-equilibrium strategy implies that 
player i’s defection probability will increase with decreas-
ing volunteer cost (Ki) or increasing interest in the collective 
good (Ui) [19].  

We will study the special case of the asymmetric volun-
teer’s game with one “strong” player and N1 “weak” play-
ers with equal degree of weakness in the system, which im-
plies that the “strong” player will enjoy either greater inter-
est Ui or lower cost Ki than “weak” players [19]. In biologi-
cal terms, the “strong” role implies social dominance and the 
“weak” role implies social subordination. We let Ks=K1<K2= 
K3=···=KN=KW and Us=U1U2=U3=···=UN=UW, N>2. Con-
sidering the “strong” player might never volunteer to pro-
duce the public goods, such as policing eggs (policing eggs 
can be treated as public goods of social insect) produced by 
worker bees but never queens in some systems [20,23], we 
assume that the “strong” player will take “freerider” strate-
gy if its strength is sufficiently strong. 

From eq. (3), we have 
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where S
* and W

* are the defection probability of “strong” 

player and “weak” co-players (respectively), and W
*
 =i

*, 

2iN. Based on eqs. (4) and (5), we can conclude that the 
defection probability of “weak” players will depend on both 
the cost-to-benefit ratio KS/US of the “strong” player and the 
group size N, while the “strong” player’s defection proba-
bility is influenced by these same two factors as well as the 
cost-to-benefit ratio KW/UW of “weak” players [19]. 

For convenience, let US=UW=1 and KS<KW<1. Then 
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where KS and KW are the cost of cooperation to the “strong” 
player and all “weak” players, respectively. 

1.2  Novel insights into the asymmetric volunteer’s game  

Diekmann’s model demonstrates that the probability of de-
fection will increase with group size when interaction is 
asymmetric (Figure 1). However, in this treatment of asym-
metry, Diekmann [19] does not analytically explore the ef-
fects of varying levels of asymmetry (although he does con-
sider some range of asymmetry in the experimental portion 
of his paper). We define a new derived parameter, the de-
gree of asymmetry, as h=KW/KS, and explore below how 
varying degrees of asymmetry affect the defection probabil-
ities of both “strong” and “weak” players. One issue raised 
by considering varying degrees of asymmetry (as well as 
larger group sizes) is that there is a threshold level of 
asymmetry and group size above which the “strong” player 
can be predicted to defect with a probability greater than 
100%. As can be seen in Figure 1, the predicted probability 
of defection for the “strong” player can exceed 100% if 
group size (N) is sufficiently large in magnitude; an analo-
gous prediction emerges at higher degrees of asymmetry (h). 
In his analysis of the asymmetrical VoD, Diekmann [19] is 
careful to specify that his derivations only apply when the 
defection probability of the “strong” player is less than 
100% (S

*<1), and never uses parameter values that would 
produce predicted defection probabilities greater than 100%. 

As our goal was to understand the effects of both group 
size (N) and the degree of asymmetry (h) for all values of 
these parameters, we sought to determine analytically the 
threshold value of these parameters above which the  

 
Figure 1  Mixed equilibrium strategy for the asymmetric volunteer’s 
dilemma with one “strong” player (stars) and N1 “weak” players (trian-
gles). If we fix the cost of “weak” players and the “strong” player at KW= 
0.25, KS=0.2, then the degree of asymmetry is h=KW/KS=1.25 (dot lines). If 
we fix the costs at KW=0.25, KS=0.125, then the degree of asymmetry is 
h=KW/KS=2 (solid lines). For either level of h, the defection probabilities of 
the “strong” player and “weak” co-players as a function of the group-size 

are
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i K    , respectively. 
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“strong” player is predicted to defect at a probability greater 

than 100%. Eq. (6) is greater than one ( *
S 1  ) in the inter-

val 
* ( 1)/( 2)

S S W
   N NK K K  (or 

* 1/ (2 )
W

  Nh h K ). At the 

critical point KS
*, the strength of “strong” player might be 

sufficiently strong to never volunteers in this situation. 
Once this critical point KS

* has been reached, the “strong” 
player will defect with 100% probability (S

*=1) for all val-

ues of KSKS
*, implying that the “strong” player never vol-

unteers. Under this scenario the “strong” player is an invar-
iant freerider, and the asymmetric game collapses to the 
simpler symmetric volunteer’s dilemma with N1 “weak” 
players. Accordingly, the defection probability of the 

“weak” players is  
1

2
W

NK . 

Increasing the degree of asymmetry will increase the 
“strong” player’s defection probability but reduce the defec-
tion probability of “weak” players in the interval [1, h*] 
(Figure 2(b), “stars lines”). From eqs. (6) and (7), we can 
see that the equilibrium solution for the “strong” player S

* 
is influenced by the cost of cooperation KS 

and the ratio 
KW/KS as well as the group-size N; the “weak” players’ 
equilibrium solution W

*

 
is influenced by the cost of cooper-

ation to the “strong” player and also by the group-size. The 
analysis presented in Figure 2 shows that if the cost to 
“weak” players KW and group size N are held constant, the 
defection probability of “weak” players will increase as the 
cost of cooperation to the “strong” player KS increases in 

interval [KS
*, KW] and be fixed at  

1

2
W

NK  in the interval 

[0, KS
*] (Figure 2(a), “triangles”); the defection probability 

of the “strong” player will reach 100% when the cost of 
cooperation to the “strong” player is less than the critical 
point of cost KS

*, and it will decrease with increasing cost to 
the “strong” player when the cost of cooperation to the 
“strong” player is greater than the critical point of cost KS

* 
(Figure 2(a), “stars”). 

Based on our definition of h, eqs. (6) and (7) and the 
above analysis and our assumption for the case in the inter-
val *

S SK K  (i.e. * 1/(2 )
W

  Nh h K ), we can derive the 

defection probability of the “strong” player and “weak” 
players as the following functions: 
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Figure 2  (a) The probability of defection of both “weak” and “strong” 
players as function of the cost of cooperation for the “strong” player (if we 
fix the cost to “weak” players at KW=0.25). The defection probability of the 
“strong” player reaches 100% when the cost to the “strong” player is 
smaller than the critical point of cost KS

*, and it will decrease with increas-
ing cost to the “strong” player; the defection probability of “weak” players 

increases with increasing cost KS and reach 1/( 2)
W

NK  when the cost to the 

“strong” player is smaller than the critical point of cost KS
*, where 

* ( 1)/( 2)
S W ,  N NK K  here at N=5. (b) The probability of defection for strong 

and weak players as functions of the degree of asymmetry when the cost to 
“weak” players is KW=0.25 and the group-size is N=5. The defection prob-
ability of the “strong” player will reach 100% when the degree of asym-
metry is greater than h* without relatedness (stars lines) where the critical 
point * 1 (2 )

W
Nh K   or greater than h** with relatedness r=0.25 (crosshairs 

lines) where the critical point h**=(KW/[r(N1)+1]1/(2N). The defection 
probability of “weak” players without relatedness (triangles lines) is great-
er than with relatedness (diamonds lines), and it will decrease with in-
creasing asymmetry when the asymmetry less than h* (or h**) and will 

reach 1/( 2)
W

NK   (or  1/( 2)

W ( ( 1) 1)


 
N

K r N ) when the degree of asym-

metry greater than h* (or h**). 

As these functions make clear, the probability of defec-
tion of the “strong” player will increase with increasing 
asymmetry (Figure 2(b), “stars”), but it will reach 100% 
when the degree of asymmetry is greater than the critical 
point of the degree of asymmetry h*, where * 1/(2 )

W
 Nh K . 

The probability of defection of “weak” players will decrease 
with increasing degree of asymmetry h in the interval [1, h*] 

and be fixed at  
1

2
W

NK  when the degree of asymmetry is 

greater than the critical point h* (Figure 2(b), “triangles”). 

1.3  Asymmetric volunteer’s dilemma game with  
relatedness 

Individuals in an asymmetric system in which cooperation 
can occur are often genetically or reciprocally related [29]. 
Relatedness has the potential to increase cooperation within 
the social group [5,7,10,18]. In the VoD game, Archetti [7,18] 
has also demonstrated that relatedness strongly influences 
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the likelihood that players will exhibit cooperative behavior. 
In fact, both the effects of asymmetry and relatedness may 
simultaneously coexist in many real systems, such as euso-
cial system of ants and bees [20], inter-specific mutualistic 
of the yuccas and the yucca moth [15] and the figs and the 
fig wasp [16,17,21,30]. Here, we sought to explore how asy-   
mmetry combined with relatedness affects the behaviors of 
individuals in cooperative social systems by recombining and 
extending the models of Diekmann [19] and Archetti [7,18]. 

In the asymmetric volunteer’s dilemma game developed 
here, we study the special case of the asymmetric volun-
teer’s game with one “strong” player and N 1 “weak” play-
ers with equal degree of weakness in the system, assuming 
that the N players are genetically and/or reciprocally related. 
Payoffs are similar to those shown above (see Section 1.1) 
for the special case of the asymmetric volunteer’s game 
with one “strong” player and N 1 “weak” players with equal 
degree of weakness. All parameters used below are the 
same as those used above for the asymmetrical case without 
relatedness. For convenience, we let r be the average relat-
edness to other members of the group. The probability that l 
of the “weak” players fail to volunteer can be expressed 
from the perspective of the “strong” player in relation to all 
“weak” players as: 

1
W W
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The probability that j of the “weak” players fail to vol-
unteer can be expressed from the perspective of a single 
“weak” player in relation to the remaining N2 “weak” 
players as: 
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The fitness of the “strong” player who chooses to provide 
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Here the “strong” volunteer has a minimum direct payoff of 
USKS regardless of whether or not one of the “weak” play-
ers produces the public good. In this case, if none of the 
other N1 members of the group (whose average related-
ness to the focal individual is r) produces the common good 

(which happens with probability 1N
W

 ) the payoff to 

“weak” players will be UW, and the payoff to the “strong” 
player will be USKS. If l of these N1 individuals fail to 
provide the public good (the probability of which is fi), the 
payoff for those N1l who volunteer to provide the public 
good is UWKW and the payoff for the l who refuse to pro-
vide the public good is UW [7,18]. 
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The “strong” player who defects has a direct payoff US so 
long as one of the “weak” players produces the public good, 

which happens with probability 11   N
W . The payoff of the 

“strong” player is 0 if none of the “weak” players produces 

the public good, which happens with probability 1 N
W . In 

this case, if none of the other N1 members of the group 
(whose average relatedness to the focal individual is r) vol-
unteers to provide the public good (which happens with 

probability 
1 N

W ), each “weak” player’s payoff is 0. If in-

stead l of these N1 individuals fail to provide the public 
good (which happens with probability fl), the payoff for 
those N1l players who produce the public good is UWKW 
and the payoff for the l players who do not produce the pub-
lic good is UW [7,18]. 

As with the “strong” player, the fitness of individual 
“weak” players for the two pure strategies of providing and 
not providing the public good can be written as: 
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The mixed-strategy equilibrium can be found by equating 
the fitness of the two pure strategies of the “strong” player 
and “weak” players [7,18], which produces the solution 
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where 
**
S  

and **
W  are the probability of defection of the 

“strong” player and all “weak” players at equilibrium, re-
spectively. 

Equivalently, we have 
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where r(N1)UW+US and KS can be defined as the benefit 
and the cost of cooperation (respectively) for the “strong” 
player if none of the other N1 members of the group pro-
duces the public good. If we let BS=r(N1)UW+US and 

CS=KS, then 
S S

S W S( 1)

C K

B r N U U


 
 is the indirect cost-to- 

benefit ratio for the cooperating “strong” player (corre-
spondingly, KS/US is the direct cost-to-benefit ratio for the 
cooperating “strong” player). Using similar notations for the 
BW and CW of each “weak” player, CW/BW=KW/r[(N2)UW+ 
US]+UW, yielding the following simplified defection proba-
bilities: 
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With the above notations, it is clear that the indirect cost- 
to-benefit ratio will decrease with increasing relatedness 
within the group. The probability of defection depends on 
the group-size N and the cost-to-benefit ratio of the other 
players. If we remove the asymmetry by setting KS=KW, the 
results simplify to those of Archetti [7,18]. If we remove 
relatedness by setting r=0, the results simplify to those of 
Diekmann [19]. These results demonstrate that the model 
developed here is a general form that subsumes these two 
more specific variants of the volunteer’s dilemma.  

For convenience, let US=UW=1, and KS<KW<1. This pro-     
duces the equilibrium probabilities of defection 
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Using our previous notation letting h=KW/KS be the de-
gree of asymmetry, then 
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From eq. (14), the probability of defection of the 
“strong” player will reach 100% at the point h** (where 

1

2
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( 1) 1

NK
h

r N

 
    

), and **
S 1   in the interval hh** 

(Figure 2(b), “crosshairs lines”). This discovery mirrors our 
discovery for eq. (8) as discussed in Section 1.2. When the 
“strong” player defects with 100% probability, the game 
once again collapses to a symmetric game involving N–1 
players (who are related in this scenario), and the defection 

probability of the “weak” players is 

1

2
W

( 1) 1

NK

r N
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(Figures 2(b) and 3(c)).  
The probability of defection at equilibrium will depend 

closely on the relatedness, the degree of asymmetry be-
tween members of the group, and the group-size. The prob-
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ability of defection will increase with increasing group size 
(Figure 3(a)) [12,19] and decrease with increasing related-
ness (Figure 3(b)) for both the “strong” and “weak” players. 
As the degree of asymmetry increases, the probability of 
defection of the “strong” player will increase, while “weak” 
players are less likely to defect when the degree of asym-
metry is less than the critical point h** (Figure 3(c)). When 
the cost to “weak” players and group size are held constant, 
the defection probability of the “strong/weak” player reach-

es  
1

2
W (10 10 )% 1 NK r N    whenever the degree of 

asymmetry is greater than the critical point h**, and this 
critical point will increase in value with increasing related-
ness (Figure 2(b)). For all parameter ranges, the probability 
of defection of the “strong” player is always greater than 
that of the “weak” players [19]. 

In Figure 4, the flat-roofed areas (in dark red) represent 
the parameter ranges of non-cooperation for the “strong” 
player. Increasing the relatedness or decreasing the degree 
of asymmetry and/or group-size will reduce the areas of 
non-cooperation for the “strong” player. 

2  Discussion 

A great number of social systems—including many human 
societies—involve voluntary contributions by individuals to 
the common good. Identifying what factors determine which 

individuals will make these contributions remains an active 
area of both theoretical and empirical inquiry. Previous 
work has demonstrated the importance of the cost-to-benefit 
ratio and overall group size [12,19] and genetic or recipro-
cal relationships [7,18] in determining how volunteer be-
haviors might evolve. However, these theories assume that 
the interactions between members of the group are symmet-
rical, which makes it difficult to account for the uneven 
contributions often observed in natural systems. Asymmet-
ric contributions to the common good have been observed 
in humans [9], bees [20], mole-rats [23], and a number of 
inter-specific mutualisms [15,17,26,30]. However, theoreti-
cal work has not shed light on how social asymmetries af-
fect predicted patterns of volunteerism when members of 
the social group are related. 

We present here just such an asymmetric model. Our 
model produces the same results as Diekmann’s, showing 
that the mixed Nash-equilibrium predicts a higher probability 
of defection for the “strong” player than the “weak” co- 
players [19] in absence of relatedness (r = 0 in our model). 
However, our model yields an additional insight: that for the 
“weak” player the defection probability negatively corre-
lates with the degree of asymmetry, whereas the same cor-
relation is positive for the “strong” player (Figure 2(b)). The 
mixed-equilibrium strategy yields the optimal payoff, which 
is higher for “strong” players who incur lower costs. In or-
der to earn the maximum payoff, the “strong” player’s de-
fection probability has to be greater than the defection  

 

Figure 3  The probability of defection for “strong” (stars) and “weak” (triangles) players as a function of the (a) group-size N, (b) the relatedness r, and (c) 
the degree of asymmetry h when other parameters are fixed at r = 0.25, KW = 0.25, h = 1.25 and N = 5. 
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Figure 4  The defection probability of strong player * as a function of the group-size N and the degree of asymmetry h for different levels of relatedness r 
(a–c), and as function of the group-size N and relatedness r for different degrees of asymmetry h (d–f) in an asymmetric volunteer dilemma game, where the cost 
of cooperating to the “weak” players is fixed at KW = 0.25. The color bar represents defection probabilities of the strong player ranging from zero to one.  

probability of “weak” co-players, who maintain a lower 
maximum payoff [19]. This suggests that as the degree of 
asymmetry increases, the “strong” player may have an in-
creasing incentive to punish non-cooperating “weak” players. 

Asymmetric social interactions have the potential to en-
courage cooperation, which can be achieved through the 
sanction and/or repression of a subordinate or dependent 
symbiont by the dominant or host [8,17,31,32]. Subordi-
nates will cooperate if the benefits they receive offset the 
costs they incur due to punishment or sanction by a domi-
nant, allowing the dominant to exploit the subordinates. 
Higher genetic or reciprocity relatedness, which can be cre-
ated by limited dispersal ability and/or high expected bene-
fit for the involved partners [1,10], might make sanction 
and/or repression more profitable for the donor individual 
[26]. 

That varying degrees of asymmetry and relatedness will 
lead to different volunteer strategies among social partners 
suggests an explanation for why in some species of social 
insects queens police eggs while in other species workers 
police eggs [33–37]: opposite policing strategies may result 
from differences in the degree of asymmetry and relatedness 
across species. Thus, the degree of asymmetry between 
dominants and subordinates in Apis florae may approach 
the critical point h** (Figure 2(b)), whereas in Apis mellifera 
the degree of asymmetry may be lower than the critical 
point h** [33,34], where h** is greatly affected by relatedness 
(see Figure 2(b)). This difference in effective asymmetry 
may explain fundamental differences in the way policing 

works in these two species of superorganisms. In our model, 
symmetric interaction (i.e. degree of asymmetry h=1) makes 
voluntary contributions to common goods least likely. This 
might explain experiments demonstrating that in the ponerine 
ant (Pachycondyla inverse) policing behavior is reduced 
when the queen is removed [36]. Our model also shows that 
the “strong” volunteer has a greater impact when the degree 
of asymmetry is higher. This result is consistent with em-
pirical observations showing that in some species, queen 
policing (a behavior that occurs within a highly asymmetric 
interaction) almost completely prevents workers from re-
producing [37–39]. 

Another critical finding of our model is that defection 
will be the “strong” player’s dominant strategy when the 
degree of asymmetry approaches the critical point h* (or h**), 
but cooperation will be dominant strategy of the “weak” 
players. This result is only somewhat tempered if the 
“strong” and “weak” players are related (Figure 2(b)). This 
may have led to the evolution of dominant behavior strate-
gies aimed at coercing cooperation from subordinates when 
the degree of asymmetry is very high. In those insect socie-
ties that are headed by a single once-mated queen, the de-
gree of asymmetry might be higher than in those with mul-
tiple queens. In the single-queen systems, the degree of 
asymmetry may approach the critical point, leading queens 
to use pheromones to manipulate workers [40,41], which 
leads to more prevalent worker policing in these species 
[37]. The experimental results of the model developed here 
may help explain the different strategies of different insect 



1980 He J Z, et al.   Chin Sci Bull   June (2012) Vol.57 No.16 

societies.  
In field observations, “weak” players, the young or sub-

ordinate members of the group, tend to offer public goods. 
For example, in the social groups of meerkats (Suricata 
suricatta), the alarm calls of young are longer in duration, 
more modulated, noisier, and have their energy at higher 
frequencies than those of adults [42,43]. These phenomena 
are consistent with the findings of our model, as weak play-
ers are more likely to contribute to public goods. If consid-
ering the cost of cooperation is one means of explaining 
individual interactions [44], then understanding and as-
sessing the degree of asymmetry may be important in ex-
plaining the pattern of cooperation observed in many social 
systems. 

Our model shows that relatedness, which could be con-
strued as either genetic or reciprocity relatedness [45], will 
also facilitate cooperation, even when related individuals 
interact asymmetrically (Figures 2(b) and 3(b)). However, it 
is important to point out that relatedness is not the primary 
factor dictating the probability of volunteering for each 
player (as shown in Figure 3(b)), but it has the potential to 
modify this probability. The effect of relatedness upon the 
“strong” player is greater than on the “weak” player: that is, 

** **
S W

r r

  


 
. Our model is consistent with other N-person 

cooperative models [7,12,18,19,46,47] in that it shows that 
the probability of defection will increase with increasing 
group-size for both “strong” and “weak” players (Figures 1 
and 3(a)). This general result was predicted by Goeree et al. 
(from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10. 
1.1.77.7999&rep=rep1&type=pdf), who argued that the 
Nash equilibrium predicts the probability of volunteering to 
be a decreasing function of group-size. Recently, Healy et al. 
[22] have also provided experimental evidence to support 
this pattern. 

In summary, our model demonstrates that group-size, 
cost-to-benefit ratio, relatedness, and the degree of asym-
metry all influence the probability of volunteerism in a sys-
tem where individuals can sacrifice for the common good. 
In our asymmetric volunteer’s dilemma game with related-
ness, the “strong” and “weak” players employ a mixed strat-
egy of either donation or defection when the group-size 
and/or the degree of asymmetry are lower than threshold 
values (Figure 4); the “weak” players have more incentive 
to produce the public good than the “strong” player, incen-
tivizing the “strong” player to exploit its “weak” co-players 
because the asymmetric interaction allows the “strong” 
player to coerce “weak” players into supplying public goods. 
Relatedness has the overall effect of increasing the level of 
volunteerism, increasing the overall level of cooperation in 
the social group. 

We are indebted to Carole Sirovich, Zhan-Shan Ma, Ya-Qiang Wang, Qi- 
Long Liu, Lei Gao, Qiu-Xia Zhao and Bao-Fa Sun for their discussion and 

comments during the preparation and revision of this manuscript. This 
work was supported by the National Natural Science Foundation of China 
(31170408, 71161020, 10961027), the Program for Innovative Research 
Team (in Science and Technology) in University of Yunnan Province, the 
Natural Science Foundation of Yunnan Province (2009CD104), the West 
Light Foundation of the Chinese Academy of Sciences, the Special Fund 
for the Excellent Youth of the Chinese Academy of Sciences (KSCX2-EW- 
Q-9), and the State Key Laboratory of Genetic Resources and Evolution.  

1 Axelrod R, Hamilton W D. The evolution of cooperation. Science, 
1981, 211: 1390–1396 

2 Milinski M. Tit for tat in sticklebacks and the evolution of coopera-
tion. Nature, 1987, 325: 433–435 

3 Colman A M. Game Theory and Its Applications in the Social and 
Biological Sciences. Oxford: Butterworth-Heinemann, 1995 

4 Dugatkin L A. Cooperation Among Animals: An Evolutionary Per-
spective. Oxford: Oxford University Press, 1997 

5 West S A, Pen I, Griffin A S. Cooperation and competition between 
relatives. Science, 2002, 296: 72–75 

6 Hauert C, Szabó G. Prisoner’s dilemma and public goods games in 
different geometries: Compulsory versus voluntary interactions. 
Complexity, 2003, 8: 31–38 

7 Archetti M. The volunteer’s dilemma and the optimal size of a social 
group. J Theor Biol, 2009, 261: 475–480 

8 Nikiforakis N, Normann H T, Wallace B. Asymmetric enforcement 
of cooperation in a social dilemma. S Econ J, 2010, 76: 638–659 

9 Axelrod R. The Evolution of Cooperation. New York: Basic Books, 
1984 

10 Frank S A. Foundations of Social Evolution Princeton. New Jersey: 
Princeton University Press, 1998 

11 West S A, Griffin A S, Gardner A. Social semantics: Altruism, coop-
eration, mutualism, strong reciprocity and group selection. J Evol Biol, 
2007, 20: 415–432 

12 Diekmann A. Volunteer’s dilemma. J Confl Resol, 1985, 29: 605– 
610 

13 Darley J M, Latane B. Bystander intervention in emergencies: Diffu-
sion of responsibility. J Pers Soc Psychol, 1968, 8: 377–383 

14 Otsubo H, Rapoport A. Dynamic volunteer’s dilemmas over a finite 
horizon—An experimental study. J Confl Resol, 2008, 52: 961–984 

15 Pellmyr O, Huth C J. Evolutionary stability of mutualism between 
yuccas and yucca moths. Nature, 1994, 372: 257–260 

16 Wang R W, Ridley J, Sun B F, et al. Interference competition and 
high temperatures reduce the virulence of fig wasps and stabilize a 
fig-wasp mutualism. PLoS ONE, 2009, 4: e7802 

17 Wang R W, Sun B F, Zheng Q. Diffusive co-evolution and mutual-
ism maintenance mechanisms in a fig-fig wasp system. Ecology, 
2010, 91: 1308–1316 

18 Archetti M. Cooperation as a volunteer’s dilemma and the strategy of 
conflict in public goods games. J Evol Biol, 2009, 22: 2192–2200 

19 Diekmann A. Cooperation in an asymmetric volunteer’s dilemma 
game theory and experimental evidence. Int J Game Theory, 1993, 22: 
75–85 

20 Ratnieks F L W, Wenseleers T. Altruism in insect societies and be-
yond: Voluntary or enforced? Trends Ecol Evol, 2008, 23: 45–52 

21 Wang R W, Sun B F, Zheng Q, et al. Asymmetric interaction and in-
determinate fitness correlation between cooperative partners in the 
fig-fig wasp mutualism. J R Soc Interface, 2011, 8: 1487–1496 

22 Healy A, Pate J. Asymmetry and incomplete information in an ex-
perimental volunteer’s dilemma. 18th World IMACS/MODSIM 
Congress, Cairns, Australia, 2009. 1457–1462 

23 Reeve H K. Queen activation of lazy workers in colonies of the euso-
cial naked mole-rat. Nature, 1992, 358: 147–149 

24 Heinsohn R, Packer C. Complex cooperative strategies in group-terri-     
torial African lions. Science, 1995, 269: 1260–1262 

25 Wang R W, Shi L. The evolution of cooperation in asymmetric sys-
tems. Sci China Life Sci, 2010, 53: 139–149 

26 Wang R W, He J Z, Wang Y Q, et al. Asymmetric interaction will fa-
cilitate the evolution of cooperation. Sci China Life Sci, 2010, 53: 



 He J Z, et al.   Chin Sci Bull   June (2012) Vol.57 No.16 1981 

1041–1046 
27 Harsanyi J C, Slten R. A General Theory of Equilibrium Selection in 

Games. Cambridge, MA: MIT Press, 1988 
28 Binmore K G. Playing Fair: Game Theory and the Social Contract. 

Cambridge, MA: MIT Press, 1994 
29 Oster G F, Wilson E O. Caste and Ecology in the Social Insects. 

Princeton, NJ: Princeton University Press, 1978 
30 Shi L, Wang R W, Zhu L X, et al. Varying coefficient analysis for 

indeterminate species interactions with non-parametric estimation, 
exemplifying with a fig-fig wasp system. Chin Sci Bull, 2011, 56: 
2545–2552 

31 Frank S A. Policing and group cohesion when resources vary. Anim 
Behav, 1996, 52: 1163–1169 

32 Ratnieks F L W, Wenseleers T. Policing insect societies. Science, 
2005, 307: 54–56 

33 Ratnieks F L W, Visscher P K. Worker policing in honeybees. Nature, 
1989, 342: 796–797 

34 Oldroyd B P, Ratnieks F L W. Anarchistic honey bee workers evade 
worker policing by laying eggs that have low remove rates. Behav 
Ecol Sociobiol, 2000, 47: 268–273 

35 Halling L A, Oldroyd B P, Wattanachaiyingcharoen W, et al. Worker 
policing in the bee Apis florae. Behav Ecol Sociobiol, 2001, 49: 
509–513 

36 D’Ettorre P, Heinze J, Ratnieks F L W. Worker policing by egg eat-
ing in the ponerine ant Pachycondyla inversa. Proc R Soc Lond B, 
2004, 271: 1427–1434 

37 Wenseleers T, Ratnieks F L W. Comparative analysis of worker re-
production and policing in eusocial hymenoptera supports relatedness 
theory. Am Nat, 2006, 168: 163–179 

38 Duchateau M J. Agonistic behaviour in colonies of the bumblebee 
Bombus terrestris. J Ethol, 1989, 7: 141–151 

39 Liebig J, Monnin T, Turillazzi S. Direct assessment of queen quality 
and lack of worker suppression in a paper wasp. Proc R Soc B, 2005, 
272: 1339–1344 

40 Keeling C I, Slessor K N, Higo H A, et al. New components of the 
honey bee (Apis mellifera L.) queen retinue pheromone. Proc Natl 
Acad Sci USA, 2003, 100: 4486–4491 

41 Beggs K T, Glendining K A, Marechal N M, et al. Queen pheromone 
modulates brain dopamine function in worker honey bees. Proc Natl 
Acad Sci USA, 2007, 104: 2460–2464 

42 Hollén L I, Manser M B. Motivation before meaning: Motivational 
information encoded in meerkat alarm calls develops earlier than ref-
erential information. Am Nat, 2007, 169: 758–767 

43 Hollén L I, Radford A N. The development of alarm call behaviour in 
mammals and birds. Anim Behav, 2009, 78: 791–800 

44 Bronstein J L. The costs of mutualism. Am Zool, 2001, 41: 825–839 
45 Boyd R, Richerson P J. The evolution of reciprocity in sizeable 

groups. J Theor Biol, 1988, 132: 337–356 
46 Weesie J. Asymmetry and timing in the volunteer’s dilemma. J Confl 

Resol, 1993, 37: 569–590 
47 Weesie J, Franzen A. Cost sharing in a volunteer’s dilemma. J Confl 

Resol, 1998, 42: 600–618 

 
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction 

in any medium, provided the original author(s) and source are credited. 

 


