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Avoiding the tragedy of the commons requires that one or more individuals in a group or partnership
‘‘volunteer’’, benefiting the group at a cost to themselves. Recognition and negotiation with social partners
can maintain cooperation, but are often not possible. If recognition and negotiation are not always the
mechanism by which cooperative partnerships avoid collective tragedies, what might explain the diverse
social cooperation observed in nature? Assuming that individuals interact asymmetrically and that both
‘‘weak’’ and ‘‘strong’’ players employ a super-rational strategy, we find that tragedy of the commons can be
avoided without requiring either recognition or negotiation. Whereas in the volunteer’s dilemma game a
rational ‘‘strong’’ player is less likely to volunteer to provide a common good in larger groups, we show that
under a wide range of conditions a super-rational ‘‘strong’’ player is more likely to provide a common good.
These results imply that the integration of super-rationality and asymmetric interaction might have the
potential to resolve the tragedy of the commons. By illuminating the conditions under which players are
likely to volunteer, we shed light on the patterns of volunteerism observed in variety of well-studied
cooperative social systems, and explore how societies might avert social tragedies.

C
ooperation has been observed in a great variety of human and non-human social systems, attracting the
attention of both biologists and social scientists1–4. Of particular interest is cooperation that requires
voluntary altruistic behavior on the part of one or more members of the group: in order to maintain

the benefits of cooperation, individuals may be required to provide a service or resource, refrain from over-
exploiting a common resource, or to police and punish freeloaders or cheaters1,5–9. While such volunteerism
contributes to the common good, it comes at a cost to the volunteer, which sets up a dilemma: if not every member
of the group volunteers in equal measure, the largest payoffs go to those who volunteer least10,11. This inequity
discourages volunteerism, leading to the loss of cooperative benefits. This potential for loss has been dubbed the
‘‘tragedy of the commons’’12, attributed to ‘‘diffusion of responsibility’’13, and explored as the ‘‘freerider prob-
lem’’14, a ‘‘social dilemma’’15, and a ‘‘multi-person prisoner’s dilemma’’16,17; the diversity of names under which
this problem has been investigated underscores the breadth and depth of its importance. Social dilemma research
across academic fields is united by the desire to illuminate the conditions under which some or all individuals in a
group can be expected to volunteer in support of the common good (i.e. cooperate) rather than refuse to volunteer
(i.e. defect).

Two theoretical constructs – the Iterated Prisoner’s Dilemma (IPD) and Volunteer’s Dilemma game (VoD) –
have been predominant in research exploring social dilemmas18–24. In both the IPD and VoD groups of coopera-
tors outperform groups of defectors, but defectors have the potential to outperform cooperators in groups: this
paradox defines the social dilemma. The key difference between these two games is that the probability of
cooperation in the IPD is strictly dependent on the cost-to-benefit discount ratio2,25 whereas in the VoD the
probability of cooperation also depends on the size of the group19,20,26–29. In analyzing the outcome of such games,
one consideration is whether a ‘‘pure’’ strategy exists which can displace all other strategies. If cooperation is a
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pure strategy, cooperating all of the time should provide the max-
imum payoff irrespective of what other individuals do. Not surpris-
ingly, pure cooperation is not predicted in social dilemmas such as
the IPD30 or VoD19. The alternative to a pure strategy is one that is
‘‘mixed’’: individuals employ different strategies with different prob-
abilities. There is strong evidence that in the social systems observed
in nature, most animals do not consistently utilize a particular strat-
egy but rather employ different strategies with different probabil-
ities31–33. For example, in eusocial colonies (which are defined by a
division labor that includes reproductive altruism), ant and bee
workers and subordinate mole rats have been shown to exhibit a
mixed strategy, altruistically helping most of the time but also infre-
quently producing their own offspring34,35.

The original forms of both the IPD and VoD assume that inter-
actions are symmetrical (i.e. the individual costs and benefits of
cooperation are identical for all individuals), which suggests that
all individuals should have the same probability of cooperating2,19.
However, the validity of this assumption has been called into ques-
tion by a great variety of observational studies that demonstrate that
some members of social groups are more likely to volunteer to pro-
vide a common good than others5,7,31,34,36,37. Because both the IPD
and VoD assume symmetrical interactions, they may not be accurate
representations how cooperation occurs in nature. In fact, almost all
of the well-studied inter-specific7,38 and intra-specific systems34,35,39

have shown that cooperative individuals interact asymmetrically.
This asymmetry could be caused by a variety of factors including a
difference in resource availability to different individuals, a differ-
ence amongst individuals in their probability of winning a fight with
others, or other characteristics that differ between dominant and
subordinate individuals40. Asymmetric interaction alters potential
payoffs and therefore may influence cooperative individuals’ optimal
strategies21,37,40–45.

In addition, most analyses of both the VoD and IPD have focused
on so-called ‘‘rational’’ solutions to each game, introducing an addi-
tional assumption about the drivers of social behavior. A key feature of
rational analyses is that they take an individually relativistic approach:
an individual will ‘rationally’ change behavior if that change in beha-
vior affords an advantage over other individuals, even if the result is
worse overall for the group. Generally, if freeriding through defection
is profitable, it will spread and displace cooperation30,46,47. The IPD
allows individuals to recognize their social partners and sanction those
partners for past defection by withholding future cooperation (a form
of costly punishment). While the means of ‘communication’ between
IPD players is restricted to complete information and recognition,
these have been shown to be an effective (if not unsophisticated)
means of ‘negotiating’ for future cooperation2.

Frequently, interacting individuals are in an incomplete informa-
tion state (or have no information, as is sometimes the case in inter-
specific mutualisms) and may not be able to recognize the identities
of other individuals, leaving each individuals to make decisions based
solely on their own benefit34,37,48,49. An alternative to the rational
analysis of evolutionary games is Hofstadter’s (1983) ‘‘super-
rational’’ approach, the theoretical equivalent of Kant’s categorical
imperative ‘‘Act only according to that maxim whereby you can, at
the same time, will that it should become a universal law’’50,51. Rather
than simply seeking the best payoff for themselves, super-rational
players pursue the strategy that maximize expected utility when
employed by all players.

Do most public goods models predict that a ‘tragedy of the com-
mons’ will undermine cooperation because their assumptions are at
odds with the conditions that actually exist in nature? In this paper
we pursue this question by presenting a new model that does not
assume symmetrical interaction or rational decision-making and
does not rely on individual recognition or negotiation. We build
upon previous work that has considered the role of asymmetry in
the VoD26,28, the IPD52, and other social dilemmas34,36 as well as the

effect of super-rationality on the outcome of the symmetric VoD19. In
presenting the first analysis of the properties of an asymmetric volun-
teer’s dilemma with super-rational players, we suggest a new mech-
anism by which the ‘tragedy of the commons’ may be averted.

Model and Results
The volunteer’s dilemma (VoD) is a particular form of public goods
game in which at least one member of a social group (henceforth
referred to as a ‘‘player’’) must volunteer to pay a cost (K) so that all
members of the group (including the volunteer) may enjoy a benefit
(U, also referred to as the ‘‘common good’’). The social dilemma faced
by VoD players is that by volunteering a player will be guaranteed to
earn a payoff (U – K . 0) but that payoff could be larger (U, so long as
at least one other player volunteers) if a player refuses to volunteer. The
‘‘tragedy of the commons’’ occurs when all players refuse to volunteer,
hoping that at least one other player will be compelled to provide the
common good; if all players refuse to volunteer (adopting the ‘free-
rider’ strategy), no one earns a payoff. If players have the option to
negotiate, the best outcome for all players in an iterated VoD is to take
turns volunteering, but if such negotiation cannot take place (or cannot
be enforced) a ‘‘tragedy of the commons’’ outcome is probable19.

Because the model presented in this paper is built upon the
foundation of previous VoD work, we briefly review the model for-
mulation and results of this previous work below. Those wishing to
fully understand these previous analyses should refer to Diekmann
(1985, 1993), Archetti (2009) and He et al. (2012)19,20,26–28.

Review of relevant previous models of the volunteer’s dilemma.
An important early analysis of the VoD was conducted by Diekmann
(1985) and forms the basis of all models discussed below. In his
analysis, Diekmann considered a game composed of N players, all
of whom experience the same cost of volunteering (K) and potential
for earning the common good (U); because all players experience the
same costs and benefits, this version of the VoD is referred to as
‘‘symmetric’’. Using conventional game-theoretic analysis assuming
rational players, Diekmann discovered that no dominant strategy
exists for the symmetric VoD. And although there is a mixed (i.e.
probabilistic) equilibrium strategy, it produces the common good at
very low rates. Interestingly, Diekmann considered a different
assumption – that of super-rationality – to look for a solution to
the symmetric VoD that was more likely to consistently produce the
common good; our analysis below will employ an analogous
approach on an asymmetric version of the VoD.

Diekmann also produced an analysis of an asymmetric VoD in a
group size N composed of one dominant (hereafter referred to as
‘‘strong’’) and N – 1 subordinate (hereafter referred to as ‘‘weak’’)
players26. The asymmetry of the game was manifest in the cost of
volunteering to provide a shared common good: the single ‘‘strong’’
player was assumed to pay a lower cost or obtain a greater utility than
the ‘‘weak’’ player. Diekmann showed that the expected utility (equi-
valent to ‘‘fitness’’ in biological terminology) of player i can be
expressed in terms of the cost of volunteering (Ki), the benefit earned
when at least one player volunteers (Ui), player i’s probability of defec-
tion (bi), and the average defection probability of all other players (bj):

Ei~biUi 1{ P
j=i

bj

� �
z 1{bið Þ Ui{Kið Þ: ð1Þ

Diekmann then derived the equilibrium probability of defection for
player i (bi*) that maximizes fitness (Ei):

b�i ~
Ui

Ki
P
N

j~1

Kj

Uj

 ! 1
N{1

ð2Þ

Under the assumptions that the weak players with equal degree of
weakness all experience the same cost (KW) and benefit (UW), that
the common good is the same for all players (US 5 UW 5 1), and that
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the ‘‘strong’’ player pays a lower cost to volunteer than each of the
‘‘weak’’ players (KS,KW, 1), Diekmann derived from equation (2)
the following equilibrium defection of probabilities for ‘‘weak’’ and
‘‘strong’’ players:

b�S~
KW

KS
KS

1
N{1, ð3Þ

b�W~KS
1

N{1: ð4Þ

Where b�S and b�W are the defection probability of ‘‘strong’’ player
and ‘‘weak’’ co-players, and KS and KW are the cooperative cost of
‘‘strong’’ player and ‘‘weak’’ players.

Equations (3–4) make it clear that increasing the group size (N)
will lead to increased probabilities of defection for both ‘‘strong’’ and
‘‘weak’’ players. Both of the probabilities also depend on the cost of
volunteering to the ‘‘strong’’ player (KS), but the ‘‘strong’’ player is

always predicted to be more likely to defect by a factor of
KW

KS
.

To explore how varying asymmetry affects the defection probabil-
ities of both ‘‘strong’’ and ‘‘weak’’ players, He et al. (2012) extended

the analysis of Diekmann (1993) by considering the ratio
KW

KS
as a

new derived parameter, the degree of asymmetry (h)26,28. This con-
cept is valuable because it allowed He et al. to more comprehensively
explore the role of asymmetry in the VoD, illuminating the condi-
tions under which the ‘‘strong’’ player is predicted to defect with
100% probability (a contingency of the asymmetric VoD what was
not considered by Diekmann (1993)). He et al. demonstrated that
there is a critical cost of volunteering K�S ~KW

(N{1)=(N{2) below
which the ‘‘strong’’ player always defects. Accordingly, this also

implies that there is a critical degree of asymmetry h�~K1= 2{Nð Þ
W

above which the ‘‘strong’’ player always defects, a finding consistent
with other theoretical analyses44. He et al. suggested that because
predicted defection probabilities above 100% have no real meaning
(i.e. bi.1), equations (3–4) are more accurately re-written as:

b�S~
h KW

h

� � 1
N{1, 1vhvh�~K1= 2{Nð Þ

W

� �
1, h§h�ð Þ

(
ð5Þ

b�W~

KW
h

� � 1
N{1, 1vhvh�~K1= 2{Nð Þ

W

� �
KWð Þ

1
N{2, h§h�ð Þ

8<
: ð6Þ

Below we will report in more detail what equation (5–6) tell us
about the asymmetric VoD, and will compare the equations derived
by He et al. (2012) under the rational assumption with the predic-
tions made when super-rationality is assumed.

Asymmetric volunteer’s dilemma game with super-rational
strategy. Using Hofstadter’s (1983) concept of super-rationality51

and building on Diekmann’s (1985) application of this concept to
the symmetric VoD19, we study the asymmetric VoD with super-
rational ‘‘strong’’ and N-1 ‘‘weak’’ players. The sole departure of
our model from the asymmetric VoD analyses reviewed above is
the assumption of super-rationality. For our version of the
asymmetric VoD, equation (1) depicts the fitness of the ‘‘strong’’
(ES) and N–1 ‘‘weak’’ (EW) players as:

ES~E1~bSUS 1{bN{1
W

� �
z 1{bSð Þ US{KWð Þ ð7Þ

EW~Ei~bW UW 1{bSbN{2
W

� �
z 1{bWð Þ UW{KWð Þ,2ƒiƒN ð8Þ

Simultaneous maximization of these expressions yields the super-
rational strategy53,54:

b��S ~
1

N{1
KW

UW

US

KS

KS

US

� � 1
N{1

ð9Þ

b��W~
KS

US

� � 1
N{1

ð10Þ

where b��S is the expected defection probability of the ‘‘strong’’ player
and b��W is the expected defection probability of the N–1 ‘‘weak’’ co-
players. Substitution of b��S and b��W in equations (7–8) and some
algebraic manipulations yields:

E�S~US{KS ð11Þ

E�W~UW{mKW ,

where
1

N{1
vmv1 and m~1{b��W (1{

1
N{1

)
ð12Þ

Diekmann (1993) showed that the fitness of rational players is Ei*
5 Ui– Ki

26. Comparing this expected fitness to (11–12), it is clear that
while the expected fitness of the ‘‘strong’’ player (ES*) is not changed
under the assumption of super-rationality, the ‘‘weak’’ players’ fit-
ness is increased (i.e. E�W~UW{mKWwUW{KW ).

To further understand the defection probabilities of ‘‘strong’’ and
‘‘weak’’ players, we let US 5 UW 5 1 and maintain the asymmetry
between players by positing that KS , KW , 1. From (9–10) we get:

b��S ~
1

N{1
KW

KS
K

1
N{1
S ð13Þ

b��W~K
1

N{1
S ð14Þ

Just as was the case for the asymmetric VoD with rational players
(see equation 3), the result shown in (13) implies that for any cost
to the ‘‘strong’’ player in the interval 0vKSvK��S (where

K��S ~ KW= N{1ð Þð Þ N{1ð Þ=N ) that player’s defection probability will
be greater than 100% (b��S w1). As discussed in He et al. (2012), we
make the realistic assumption that the ‘‘strong’’ player defects with
100% probability (b�S~1) for all values of KSvK�S once the probabil-
ity of defection of the ‘‘strong’’ player reaches 100% (i.e. the ‘‘strong’’
player never volunteers); the probability of the ‘‘weak’’ player is
similarly fixed. Under this assumption, the defection probability of

the ‘‘weak’’ players is KW= N{1ð Þð Þ
1

N{2, because the asymmetric
game with super-rational strategy becomes a symmetric VoD with
N – 1 ‘‘weak’’ players (as explored by Diekmann 1985). Introducing

the degree of asymmetry as h~
KW

KS
, the defection probability of the

‘‘strong’’ player and ‘‘weak’’ players with super-rational strategy
becomes:

b��S ~
1

N{1 h KW
h

� � 1
N{1, 1ƒhƒh��

1, hwh��

(
ð15Þ

b��W~

KW
h

� � 1
N{1, 1ƒhƒh��

KW
N{1

� � 1
N{2, hwh��

8<
: ð16Þ

where the critical point h��~exp N{1ð Þ
.

N{2ð Þ{ln N{1ð Þ
.�h

K1= N{1ð Þ
W Þ� (after He et al. 2012).
Having derived the above equations we can now compare the

expected outcomes for the asymmetric VoD with rational and
super-rational strategies. Figure 1 shows the effects of group size
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(N) and degree of asymmetry (h) on the defection probability (b) of
‘‘strong’’ and ‘‘weak’’ players. As shown previously by Diekmann
(1993), the probability of defection (b) of all rational players
increases as group size (N) increases, with bS*.bW* for all values
of N26. As shown previously by He et al. (2012), higher degrees of
asymmetry (h) lead to larger differences between the defection prob-
abilities of ‘‘strong’’ and ‘‘weak’’ players28. What is new in Figure 1 is
the result for super-rational players: while at low group sizes the
‘‘strong’’ player is more likely to defect, at a critical group size N*
the ‘‘strong’’ player’s defection probability begins to decrease, which
at larger group sizes means that bW**.bS** (see Supplementary
Information (SI) for a formal derivation of N*). As implied by the
equivalence of (6) and (16), the defection probabilities of super-
rational and rational ‘‘weak’’ players are the same at lower degrees
of asymmetry (h,h*and h,h**). While higher degrees of asym-
metry (h) lead to larger differences in the defection probabilities of
rational ‘‘strong’’ and ‘‘weak’’ players, the introduction of super-
rationality produces the opposite trend: higher degrees of asymmetry
(h) lead to smaller differences in defection probabilities.

Figure 2 further explores the effect increasing degrees of asym-
metry (h) on the defection probabilities (b) of ‘‘strong’’ and ‘‘weak’’
players. As previously shown by He et al. (2012) and displayed in
Figure 2A, increasing asymmetry in the rational VoD leads to more
dramatic differences in the defection probabilities (b) of ‘‘strong’’
and ‘‘weak’’ players, and above the critical degree of asymmetry
(h*) the ‘‘strong’’ player always defects (which reduces the game to
a symmetric VoD between ‘‘weak’’ players, see above)28. In contrast,
the current analysis of the super-rational asymmetric VoD makes
more complex predictions about the defection probabilities (b) of
‘‘strong’’ and ‘‘weak’’ players (Figure 2B). While there still exists a
critical degree of asymmetry above which the ‘‘strong’’ player always
defects (h**), the asymmetry must be much larger in order to remove
the ‘‘strong’’ player from the pool of potentially-volunteering players
(i.e. h**.h*). In addition, as Figure 2B demonstrates, the defection
probability of the ‘‘strong’’ player is much lower than that of the
‘‘weak’’ player for low degrees of asymmetry (h ,h’).

Figure 3 provides a more comprehensive representation of super-
rational findings already provided in Figures 1 and 2 by plotting the
probability of cooperation for the ‘‘strong’’ player (bS**) and ‘‘weak’’
players (bW**) across a wide range of group sizes (N) and degrees of
asymmetry (h). Figure 3A/B demonstrates that the super-rational
findings shown in Figures 1 and 2 are robust over a large range of
model parameters.

Production of the common good in variations of the volunteer’s
dilemma. The tragedy of the commons is averted when a common
good is produced. In this section we examine how different VoD
assumptions affect the probability (P) that this common good is
produced. In our simple version of the VoD only one player is
required to volunteer in order to produce the collective good,

which means that P~1{ P
N

i~1
b�i

26.

As shown by Diekmann (1993)26, the probability that the common
good will be produced in the asymmetric version of the VoD that
assumes that players are rational can be expressed as:

PAR~1{b�S b�W
� �N{1

~
1{

KW

UW

KS

US

� � 1
N{1

, (KS§K�S ~K (N{1)=(N{2)
W )

1{K
N{1
N{2
W , (KSvK�S )

8>><
>>:

ð17Þ

Under the assumptions of asymmetry and super-rationality
employed in our VoD model, the probability of producing the com-
mon good can be expressed as:

PAS~1{b��S b��W
� �N{1

~

1{
1

N{1
KW

UW

KS

US

� � 1
N{1

, (KS§K��S ~ KW=(N{1)ð Þ(N{1)=N
)

1{
KW

N{1

� �N{1
N{2

, (KSvK��S )

8>>>><
>>>>:

ð18Þ

Figure 1 | Defection probabilities as a function of group size under the assumptions of rationality and super-rationality: Probability of defection (b)
as a function of group size (N) under low (triangles, h 5 1.25) and high (squares, h 5 2) degrees of asymmetry (h). For the ‘‘strong’’ player, defection

probabilities vary greatly depending on whether the strategy is assumed to be rational (blue shapes based eq. 5) or super-rational (red shapes based

on eq. 15). For the ‘‘weak’’ player, defection probabilities (purple shapes) are comparable regardless of whether or not the strategy assumed is rational

or super-rational. In this figure, we show only the super-rational ‘‘weak’’ players’ defection probabilities (purple shapes based on eq. 16); the

rational defection probabilities are identical until the ‘‘strong’’ player’s defection probability reaches 100% (bs 5 1), at which point the ‘‘weak’’

player’s defection probability is fixed (see eq. 6). For all plots the cooperative cost to ‘‘weak’’ players is fixed at Kw 5 0.25.
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For convenience, we let US 5 UW 5 1, KS , KW , 1 (KW be constant)
and KW/KS 5 h (the degree of asymmetry), which produces the
following:

PAR~
1{KW

KW

h

� � 1
N{1

, (hƒh�~KW
1=(2{N))

1{KW
N{1
N{2 , (hwh�)

8><
>: ð19Þ

PAS~

1{
KW

N{1
KW

h

� � 1
N{1

, (hƒh��~ exp½N{1
N{2

{ ln
N{1

K 1=(N{1)
W

�)

1{
KW

N{1

� �N{1
N{2

, (hwh��)

8>>>><
>>>>:

ð20Þ

Figure 4 demonstrates how the probability of producing the com-
mon good (P) is affected by variations in the degree of asymmetry (h)

and group size (N) for asymmetric versions of the VoD considered
above. Under the rational assumption the probability of producing
the common good (P) decreases with increasing group size (N) when
interactions are asymmetrical (red squares representing PAR, whose
limit value is 1{KW ); that is, for larger groups with a high cost of
volunteering the tragedy of the commons is more likely to occur in
the VoD when rational strategies are employed. A comparison of
Figure 4A (h 51.25) with Figure 4B (h52) demonstrates that greater
degrees of asymmetry increase the likelihood of producing the com-
mon good (red squares representing PAR and blue diamonds repre-
senting PAS) in both the rational and super-rational scenarios. In
contrast, introduction of the super-rational strategy (Figure 4, blue
diamonds representing PAS) can – above a critical group size N* (see
Supplementary Information SI) – leads to increased common good
production with increased group size. The limit value of PAS is 1,
which implies that for larger groups the tragedy of the commons can
be averted so long as the cost of volunteering is lower than the
common benefit. As with the rational version of the asymmetric
VoD, a comparison of Figure 4A (h 51.25) with Figure 4B (h52)

Figure 2 | Defection probabilities as a function of asymmetry under the assumptions of rationality and super-rationality: Probability of defection (b) as
function of degree of asymmetry (h) for strong (circles) and weak (diamonds) players. For ‘‘strong’’ players, the probability of defection is strongly

affected by whether strong players are assumed to adopt the rational (A, blue circles based on eq. 5) or the super-rational (B, red circles based on eq. 15)

strategy. For ‘‘weak’’ players the probability of defection under the rational assumption (A, purple triangles based on eq. 6) only differs from the

super-rational assumption (B, purple triangles based on eq. 16) based on when the ‘‘strong’’ player is predicted to defect with 100% probability.

Three critical values of the degree of asymmetry (h) are shown with arrows: when h $ h* the rational ‘‘strong’’ player always defects, when h 5h’ the

super-rational players have equal defection probabilities, and when h $ h** the super-rational ‘‘strong’’ player always defects. For all plots the cooperative

cost to ‘‘weak’’ players is fixed at Kw 5 0.25 and group size is fixed at N 5 5.
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demonstrates that greater degrees of asymmetry increase the like-
lihood of producing the common good when super-rationality is
assumed (PAS). Figure 3C provides a more comprehensive repres-

entation of super-rational findings already provided in Figure 4 by
plotting the probability of producing the common good (PAS) across
a wide range of group sizes (N) and degrees of asymmetry (h).

Figure 3 | Collective good production in the asymmetric volunteer’s dilemma game (super-rational solution): The probability of cooperation for the

‘‘strong’’ (A) and ‘‘weak’’ players (B) and the probability of producing the collective good (C) are shown as functions of the degree of asymmetry

(h) and the group-size (N). Plots are based on equations 15 (A), 16 (B), and 20 (C) with the cooperative cost to weak players fixed at Kw 5 0.2.

Figure 4 | Collective good production in various forms of the volunteer’s dilemma (VoD) game: The probability of producing the collective good

(P) as a function of the group size (N) in the, asymmetric VoD assuming a rational strategy (red squares based on eq. 19) and the asymmetric

VoD assuming a super-rational strategy (blue diamonds based on eq. 20). Results are shown for low (A, h 5 1.25) and high (B, h 5 2) levels of asymmetry.

For all plots the cooperative cost to ‘‘weak’’ players is fixed at Kw 5 0.25.
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Figure 3C demonstrates that the super-rational findings shown in
Figure 4 are robust over a large range of model parameters.

Discussion
Diekmann (1993) has pointed out that the predicted behavior of
‘‘strong’’ players in the asymmetric VoD depends on the method
of game analysis employed26. The mixed Nash-equilibrium, which
represents a ‘‘rational’’ analysis, predicts that the ‘‘strong’’ player will
be more likely to defect than the N – 1 ‘‘weak’’ players (as in our
Figure 1 and Figure 2A, blue lines compared to purple lines). Other
theories for finding stable strategies in games, including the
Harsanyi-Selten theory53 and Schelling’s ‘‘prominent’’ solution55,
make the opposite prediction26. We add to Diekmann’s analysis by
showing that when the ‘‘strong’’ and ‘‘weak’’ players both employ a
super-rational strategy, the probability of defection of the ‘‘strong’’
player (bS) is predicted to be lower than the ‘‘weak’’ players within a
particular range of asymmetry (Figure 2B, when h,h’), and
decreases as group size (N) increases (as in Figure 1, red lines com-
pared to purple lines, Figure 4A/B, and Figure 3A). This shift in the
behavior of the ‘‘strong’’ player leads to increased likelihood of pro-
ducing the common good (Figure 3C), making our model the first
version of the VoD that demonstrates a means by which the tragedy
of the commons can be consistently averted.

The model developed here demonstrates that, when interactions are
asymmetric, the tragedy of the commons can be avoided even when
interacting individuals are simply maximizing their own fitness or
income gain; complicated maintenance mechanisms such as recog-
nition or negotiation are not necessarily required. In systems with weak
or non-existent recognition (such as in microbial systems or in inter-
specific mutualisms), individuals are more likely to adopt a strategy
that depends only on an assessment of what produces their best abso-
lute outcome (i.e. the super-rational strategy). For example, leguminous
host plants reduce or increase oxygen supplies (which in turn decreases
or increases the growth rate of symbiotic bacteria) in response to the
amount of nitrogen provided by rhizobia in the root nodule5. Yucca
plants also abort the fruits oviposited by moths based on how many
seeds they produced48. These systems stand in contrast to human
cooperative systems in which individuals are often able to effectively
communicate with each other (i.e. are in a ‘‘complete information
state’’) and public goods can be produced by rational individuals
through partner recognition and/or negotiation mechanisms56–60.

Assuming that recognition and negotiation are not possible, and
considering asymmetric contributions to the common good which
have been observed in humans2, bees35, mole-rats34, and a number of
inter-specific mutualisms32,37,47,61, the model developed here demon-
strates that the ‘strong’ player is more likely to produce a common
good in increasingly large groups if the degree of asymmetry is lower
than the critical degree of asymmetry (h**) (Figure 3A, red region).
In a cooperative system composed of many individuals, free-riding
‘weak’ individuals are less likely to encounter ‘strong’ players and
therefore less likely to be punished by these ‘strong’ players1. Absent
the ability to effectively utilize punishment as an enforcement strat-
egy62, the ‘strong’ players are more likely prevent the loss of coopera-
tive benefits -- as observed in the model developed here -- because in
maintaining cooperation ‘strong’ players stand to gain much greater
benefits than ‘weak’ players63. However, in cooperative systems com-
posed of only a few individuals, the freeriding ‘weak’ individuals will
be more likely to encounter the ‘strong’ players and be punished. The
weaker individuals therefore should be more likely to pay the cost to
provide the common good; this explains the observed results of our
model that when the group size is small and the degree of asymmetry
is higher than the critical degree of asymmetry (h**), the ‘strong’
player tends to defect but the common good is likely to be produced
by ‘weak’ players (Figure 3B; Figure 4B, red region).

Asymmetry distinguishes our model from most of the theoretical
work that has been presented to resolve the tragedy of the commons64,65.

Many animal societies have been shown to be composed of dom-
inant and subordinate individuals66–68, whose behavioral options
may be well-represented by our ‘‘strong’’ and ‘‘weak’’ players. The
degree of asymmetry between dominant and subordinate individuals
varies, and in our model there exists a critical degree of asymmetry
(h’) below which the dominant individual is more likely to volunteer.
Lower degrees of asymmetry may explain why adult meerkats
(Suricata surucatta), are more likely to produce alarm calls than
juveniles69. Perhaps the most fitting comparison of our model is to
eusocial insect colonies in which eggs produced by ‘cheating’ workers
are in some species removed by the queen39,70 and in other species
removed by the workers71. Our model suggests that removal by the
queen should occur in species where social asymmetry is mild,
whereas removal by workers should occur when the social asym-
metry is much greater; this explanation has the potential to be inves-
tigated empirically.

Most theoretical explorations of the tragedy of the commons are
designed to explain intra-specific cooperation. While our model
might explain why members of the same species with asymmetric
social interactions cooperate, it also can be applied to inter-specific
mutualisms, which are inherently asymmetrical. Our assumption of
super-rationality applies particularly well to inter-specific mutual-
isms because interacting members of different species are usually not
in competition with each other and therefore gain nothing from the
relativistic logic of rational behavior. Super-rationality also applies
well to mutualist species because they depend on the success of their
partner species in order to survive and reproduce. Nonetheless,
cheating can occur in mutualisms72, and our model sheds light on
which species should volunteer to prevent cheating. Plants often pay
costs in mutualistic interactions (suggesting that they are the
‘‘strong’’ player), and have been shown to volunteer to prevent cheat-
ing in leguminous plants that host nitrogen-fixing bacteria5 and
yucca48,61 and fig47 species that abort fruits in which insect pollinators
have ‘cheated’ by over-exploitation and/or under-pollination.

Can our model be applied to humans? Humans do seem to con-
sistently depart from a ‘‘rational’’ approach. Many human social
dilemmas – such as fisheries overexploitation or anthropogenic cli-
mate change – emerge in situations where negotiation between large
groups has proved unfeasible. In addition, social asymmetry is a
common element within most human societies as well as being a
global inter-societal phenomenon. But despite these parallels with
the model presented here, human societies cannot be fully repre-
sented by such a simple model because they are composed of a variety
of social groups operating at a diversity of scales and organizational
structures73. Where would our model apply? Experimental studies of
the VoD suggest that increasing the cost of volunteering leads to less
rather than more volunteerism74, a result that is inconsistent with
previous VoD analyses26 but is well-explained by our super-rational
asymmetric VoD. Such experimental studies suggest that in small-
scale social groups humans may apply a super-rational approach.

Perhaps the most meaningful comparison of our model to actual
human societies would be at the largest scale of social organization,
that of nation-states. Nation-states aggregate the interests of incred-
ibly large numbers of individuals, simultaneously representing and
influencing their populations through national policies. As such,
nation-states may act as ‘individuals’ interacting in a ‘community
of nations’. Clearly these interactions are not symmetrical: some
nation-states have a greater potential to provide for the common
good than others. Interactions between nation-states can sometimes
involve negotiation, but when it comes to the most problematic
ecological tragedies of the commons (e.g. fisheries collapse and
destructive climate change), negotiation has often proved ineffect-
ive75,76. Perhaps, if negotiations continue to fail, nations with the
greater ability to make sacrifices (i.e. ‘‘strong’’ player nations) will
decide to pay the cost of preventing fisheries collapses or mitigating
climate change. To more realistically represent the interactions of
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nation-states, future modeling efforts must consider the impact of
more than one ‘‘strong’’ player or varying degrees of asymmetry
between players on overall volunteerism in the social group. To
better apply to human social dilemmas in general, future modeling
should also consider the role that asymmetry and super-rationality
might play in the multiple levels of human social organization.

In conclusion, introducing a super-rational strategy radically
changes the predicted outcome of the asymmetric volunteer’s
dilemma (VoD). Whereas VoD models assuming that players
employ rational strategies predict that the individual probability of
volunteerism will decrease in larger social groups, we show that as
long as the asymmetry between the single ‘‘strong’’ and multiple
‘‘weak’’ players is not too extreme and the group is sufficiently large,
the super-rational strategy compels ‘‘strong’’ players to volunteer
more frequently in larger groups. This increased volunteerism from
‘‘strong’’ players translates to greater overall cooperation (as mea-
sured by the probability of producing the common good) in larger
groups experiencing intermediate degrees of asymmetry, a result that
is consistent with observational studies performed on both human
and non-human animals. Future theoretical and empirical work
should focus on the evolutionary mechanisms that might allow a
super-rational strategy to persist in the face of cheating, free-riding,
and defection.
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