Evolution Course At-A-Glance:

Week	Major Topic(s)	Key Questions	Readings	Events & Assignments	In-class activities and objectives:	Comp Lab?
01	The Origin of Evolution	 What were the earliest theories explaining evolutionary patterns? Who were the prominent scientists who contributed to early evolutionary theory? What led Darwin and Wallace to their theory of natural selection? 	Zimmer Chapters 1 & 2	 Syllabus distributed LMS Warm-up Assignments discussed There are extra-credit Follow-Up Questions for this week 	 Group Activity: Why were Darwin's ideas revolutionary? Understand Darwin's ideas in the context of his time. Explain how the positing of a feasible hypothesis sets up the potential for science. Describe the ways that Darwin's ideas are still challenging to contemporary ideas. 	ΝΟ
02	Genes, Traits, & Evolutionary Change	 What is the genetic basis for traits? Why is heritability a prerequisite for evolution? What are the different patterns inheritance can take? What is the role of mutation in evolutionary processes? 	Zimmer Chapter 5	 Reading Questions due 2 hours before your class section meets Class visits a computer lab: remember to bring your Pratt ID!! There are extra-credit Follow-Up Questions for this week LMS Warm-up Assignments due, TBD @ 11:55 pm 	 Individual Activity: Discovering the genetic basis of traits Choose an organismal trait whose genetic basis is of interest. Using internet and/or library research resources, find scientific evidence for the genetic basis of this trait. Share your find with your classmates, identifying the nature of this evidence and what ideas about the genetic basis of this trait are communicated by this source. Identify whether the evidence found by your classmates is reported in the primary, secondary, or tertiary literature. 	YES
03	The Fossil Record	 How does geological knowledge contribute to our understanding of evolution? How are fossils used to reconstruct evolutionary histories? What were some of the major evolutionary innovations of early life? What are "fossil intermediates" and why are they important? 	Zimmer Chapter 3	 Reading Questions due 2 hours before your class section meets There are extra-credit Follow-Up Questions for this week Purchase the SimUText lab by TBD @ 11:55 pm 	 Group Activity: Homology, Analogy, and/or Homoplasy? For a variety of paired species, identify a similar trait. Decide whether this shared trait represents homology, analogy, and/ or homoplasy. Use evidence to explain why this similar trait does or does not represent homology, analogy, and homoplasy. 	ΝΟ

Week	Major Topic(s)	Key Questions	Readings	Events & Assignments	In-class activities and objectives:	Comp Lab?
04	The Tree of Life 1	 What are some ways that life might have gotten started? What is a phylogenetic tree? How do we classify extant organisms based on their evolutionary history? How do changes in genes lead to evolutionary diversification? 	Zimmer Chapter 4 & p. 194-198	 Reading Questions due 2 hours before your class section meets Class visits a computer lab: remember to bring your Pratt ID!! There are extra-credit Follow-Up Questions for this week 	 Individual Activity: Flowers and Trees Explore the basic characteristics and properties of phylogenetic trees. Discover some common misconceptions about and misinterpretations of phylogenetic trees. Construct a phylogeny based variation in the traits of extant species. 	YES
05	Natural Selection & Adaptation	 What is genetic drift and how does it cause evolutionary change? What is natural selection? How does natural selection produce adaptation? Why is genetic diversity needed in order for evolution to occur? How are behaviors adaptive? 	Zimmer Chapter 6 & p. 185-194 & 327-347	 Reading Questions due 2 hours before your class section meets There are extra-credit Follow-Up Questions for this week Term Project Initial Source List due TBD @ 11:55 pm 	 Individual Activity: Drift in Design Identify ideas about how genetic drift works embedded in an animated video short. Explain how various "design elements" have been used to communicate these ideas to the viewer. Group Activity: Putting adaptations to the test Describe the important features of a trait that might make it adaptive, explicitly explaining how that trait might increase the probability of surviving and reproducing. Come up with up with a hypothesis as to how this trait evolved by telling an "evolutionary story". Devise a plan to test this hypothesis using an experiment, a comparative study, or some other scientific means. 	NO

Week	Major Topic(s)	Key Questions	Readings	Events & Assignments	In-class activities and objectives:	Comp Lab?
06	The Tree of Life 2	 How is DNA evidence used to construct phylogenetic trees and differentiate species? How does horizontal gene transfer complicate our understanding of evolutionary trees? What is evolutionary convergence? 	Zimmer Chapter 7 & p. 198-209	 Class visits a computer lab: remember to bring your Pratt ID!! Reading Questions due 2 hours before your class section meets There are extra-credit Follow-Up Questions for this week Flowers and Trees Lab due October 6th, 2017 @ 11:55 pm 	 Individual Activity: Flowers and Trees (continued) Explore the basic characteristics and properties of phylogenetic trees. Discover some common misconceptions about and misinterpretations of phylogenetic trees. Construct a phylogeny based variation in the traits of extant species. 	YES
07	Sex & Reproduction	 Why do some organisms reproduce sexually? How is sexual selection different from other forms of natural selection? What roles do conflict and cooperation play in reproduction? 	Zimmer Chapter 9 <i>This View of Life</i> "The Science of Sex Differences Is Complicated (and Biased)"	 Class visits a computer lab: remember to bring your Pratt ID!! Reading Questions due 2 hours before your class section meets There are extra-credit Follow-Up Questions for this week 	 Group Activity: Mapping the Process of Sexual Selection Choose a trait in a particular species that is likely to be sexually selected; Do appropriate web research to better understand this trait and how it might have been sexually selected; Construct a concept map — designed to teach others — that tells an evolutionary story about how this sexually selected trait evolved; and Present your concept map to the rest of the class so that we can: a) understand how sexual selection works; and b) compare and contrast different ways of representing information on a concept map. 	YES
08	Term Pr	oject Proposal V	Vorkshop	 Draft Term Project Proposal due in printed form when you arrive in class Scan of your "workshopped" Draft Term Project Proposal due the day after the in- class workshop 	<i>Group Activity:</i> Draft Term Project Proposal Workshop • TBD	ΝΟ

Week	Major Topic(s)	Key Questions	Readings	Events & Assignments	In-class activities and objectives:	Comp Lab?
09	Speciation	 What is a species? How do we identify different species? What is the evolutionary process that generates new species? What drives the patterns of species diversity that we observe across the earth's ecosystems? 	Zimmer Chapter 10	 Reading Questions due 2 hours before your class section meets Class visits a computer lab: remember to bring your Pratt ID!! There are extra-credit Follow-Up Questions for this week Term Project Proposal due TBD @ 11:55 pm 	 Group Activity: Depicting mechanisms of speciation Discuss how your assigned mechanism of speciation (allopatry, ring speciation, or sympatry) can produce distinct species. Represent your assigned mechanism as a concept map that includes: The sequence of events that leads to speciation; A clear definition of the factor(s) that allow speciation to occur; An explanation of how pre- and post-zygotic reproductive barriers evolve; and Examples of species that have emerged by your assigned mechanism. Share your concept map with your classmates. 	YES
10	Macroevolution	 Why do extinctions occur? How common is extinction? What causes evolutionary radiations? What are "mass extinctions" and how have they influenced the evolutionary history of the earth? How does the current rate of extinction compare with the past? 	Zimmer Chapter 11	 Reading Questions due 2 hours before your class section meets There are extra-credit Follow-Up Questions for this week 	 Group Activity: Do we need to prevent a human-caused mass extinction event? Consider the question "Do we need to prevent a human-caused mass extinction event?". Based on the position assigned to your group, devise a series of arguments to support your position. Identify which of your arguments are scientific and which are normative. 	NO

Week	Major Topic(s)	Key Questions	Readings	Events & Assignments	In-class activities and objectives:	Comp Lab?
11	Coevolution	 What is coevolution? What is the connection between symbiosis and coevolution? What ecological interactions produce coevolution? How do we find evidence for coevolution? How does artificial selection differ from natural selection? 	 Zimmer Chapter 12 One CHOICE video 	 Choice Video for Coevolution week should be registered on the LMS by November 13th, 2017 @ 11:55 pm Reading Questions due 2 hours before your class section meets There are extra-credit Follow-Up Questions for this week Term Project Sketch due TBD @ 11:55 pm 	 Group Activity: What kind of coevolution? To identify the type of coevolutionary relationship maintained by a pair of species by assessing the net cost or benefit of the interaction to individuals of each species. To explain and justify the categorization of a particular species-pair relationship as mutualistic, commensal, parasitic, predatory, or competitive. To identify and/or hypothesize how the coevolutionary relationship maintained by this pair of species has shaped the adaptations typical of each species. 	ΝΟ
12	Selection Beyond the Individual	 Can selection occur at levels above the individual? How is kin selection different from other forms of natural selection? What is group selection and how is it different from other forms of natural selection? Can cooperation be a product of natural selection? 	 Zimmer p. 347-352 Evolution for Everyone Chapters 18-20 	 Reading Questions due 2 hours before your class section meets There are extra-credit Follow-Up Questions for this week Draft Project Summary due TBD @ 11:55 pm 	 Group Activity: The evolution of altruism Consider how a particular "focal behavior" could be considered altruistic. Explain the conditions under which this altruistic behavior might be favored. Imagine how an altruistic behavior might be exploited and how altruists have evolved to avoid being exploited. 	NO
13	Humans & Cultural Evolution	 How did humans evolve? How does our evolutionary history compare with other organisms? What is "cultural evolution" and how does it compare with biological evolution? 	 Zimmer Chapter 14 & p. 352-357 This View of Life "The New Science of Intentional Change" 	 Reading Questions due 2 hours before your class section meets Class visits a computer lab: remember to bring your Pratt ID!! There are extra-credit Follow-Up Questions for this week Term Project & Term Project Summary due TBD @ 11:55 pm 	 Group Activity: Does culture evolve? Consider whether our understanding of how biological evolution works could be used to explain how and why culture changes. Compare and contrast the processes of biological and cultural evolution in a concept map. Present your concept map to the class. 	YES

Week	Major Topic(s)	Key Questions	Readings	Events & Assignments	In-class activities and objectives:	Comp Lab?
14	Prospects for Evolution	 How can evolutionary knowledge serve humanity? What are some ways that technology may affect the future path of evolution? 	Zimmer Chapter 15	 Reading Questions due 2 hours before your class section meets Course Evaluations Bring any questions you have in preparation for the Final Exam There are extra-credit Follow-Up Questions for this week 	 Group Activity: Future evolution Predict how particular traits in particular species may evolve in the future. Analyze the predictions of your classmates, determining whether each prediction is evolutionarily feasible. 	ΝΟ
15	Final Exam taken in class on the LMS.			 Extra credit AMNH Assignment due, TBD @ 5:00 pm Class visits a computer lab: remember to bring your Pratt ID!! 	n/a	YES

Last updated: Tuesday, August 22, 2017